Avoiding solid carbon deposition in plasma-based dry reforming of methane.

O. Biodo, C.F.A.M. van Deursen, A. Hughes, A. van de Steeg, W. Bongers, M.C.M. van de Sanden, G. van Rooij and A. Bogaerts

Green Chemistry, 25, 10485 (2023)


Plasma-assisted dry reforming of CH4: How small amounts of O2 addition can drastically enhance the oxygenate production-experiments and insights from plasma chemical kinetics modeling.

S. Li, J. Sun, Y. Gorbanev, K. van’t Veer, B. Loenders, Y. Yi, T. Kenis, Qi Chen and A. Bogaerts

ACS Sustainable Chem. Eng., 11, 15373−15384 (2023) and supporting information


Plasma-based CO2 conversion: How to correctly analyze the performance?

B. Wanten, R. Vertongen, R. De Meyer and A. Bogaerts

J. Energy Chem., 86, 180-196 (2023) and supplementary information I and supplementary information II


Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas.

S. Van Alphen, A. Hecimovic, C.K. Kiefer, U. Fantz, R. Snyders and A. Bogaerts

Chem. Eng. J., 462, 142217 (2023) and supporting information


Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma.
S. Kelly, C. Verheyen, A. Cowley and A. Bogaerts
Chem, 8, 2797–2816, (2022)​ and its supporting information



Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream.
F. Girard-Sahun, O. Biondo, G. Trenchev, G. van Rooij and A. Bogaerts
Chem. Eng. Jour., 442, 136268 (2022) and its supporting information

Dry reforming of methane in an atmospheric pressure glow discharge: Confining the plasma to expand the performance.

B. Wanten, S. Maerivoet, C. Vantomme, J. Slaets, G. Trenchev and A. Bogaerts

J. CO2 Util.,56, 101869 (2022) and its supporting information.

Oxygenate production from plasma-activated reaction of CO2 and ethane.

A.N. Biswas, L R. Winter, B. Loenders, Z. Xie, A. Bogaerts and J.G. Chen

ACS Energy Lett.7, 236-241 (2022) and its supporting information.

On the kinetics and equilibria of plasma-based dry reforming of methane.
Y. Uytdenhouwen, K.M. Bal, E.C. Neyts, V. Meynen, P. Cool and A. Bogaerts
Chem. Eng. J., 405 126630 (2021)

Plasma-based CO2 conversion: To quench or not to quench?
V. Vermeiren and A. Bogaerts
J. Phys. Chem. C, 124, 18401-18415 (2020)


Plasma technology for CO2 conversion: A personal perspective on prospects and gaps.
A. Bogaerts and G. Centi
Front. Energy Res.
, 8, 111 (2020)

CO2 and CH4 conversion in “real” gas mixtures in a gliding arc plasmatron: how do N2 and O2 affect the performance?
J. Slaets, M. Aghaei, S. Ceulemans, S. Van Alphen and A. Bogaerts
Green Chem., 22, 1366 (2020)

Modeling plasma-based CO2 and CH4 conversion in mixtuires with N2, O2 and H2O: The bigger plasma chemistry picture.
W. Wang, R. Snoecks, X. Zhang, M.S. Cha and A. Bogaerts
J. Phys. Chem. C, 122, 8704-8723 (2018) and its supporting information. (Invited feature article and selected for the cover of the journal).

Plasma technology - a novel solution for CO2 conversion?
R. Snoeckx and A. Bogaerts
Chem. Soc. Rev., 46, 5805-5863 (2017) (Paper featered on the back cover page of the journal)

Dry reforming of methane in a gliding arc plasmatron: towards a better understanding of the plasma chemistry.
E. Cleiren, S. Heijkers, M. Ramakers and A. Bogaerts
ChemSusChem, 10, 4025-4036 (2017) and its supposting information.  (Cover feature of the journal)

Gliding arc plasmatron: providing an alternativemethod for carbon dioxide conversion.
M. Ramakers, G. Trenchev, S. Heijkers, W. Wang and A. Bogaerts
ChemSusChem, 10, 2642-2652 (2017) and its supporting information.

The quest for value-added products from carbon dioxide and water in a dielectric barrier discharge: a chemical kinetics study.
R. Snoeckx, A. Ozkan, F. Reniers and A. Bogaerts
ChemSusChem, 10, 409-424 (2017) and its supporting information.

CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity?
R. Snoeckx, S. Heijkers, K. Van Wesenbeeck, S. Lenaerts and A. Bogaerts
Energy Environm. Sci., 9, 999-1011 (2016) and its supplemenatry information.

Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.
R. Aerts, W. Somers and A. Bogaerts
ChemSusChem, 8, 702-716 (2015)

Plasma-based conversion of CO2: current status and future challenges.
A. Bogaerts, T. Kozák, K. Van Laer and R. Snoeckx
Faraday Discuss., 183, 217-232 (2015)

The dominant pathways for the conversion of methane into oxygenates and syngas in an atmospheric pressure dielectric barrier discharge.
C. De Bie, J. van Dijk and A. Bogaerts
J. Phys. Chem. C, 119, 22331-22350 (2015)

Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model.
T. Kozák and A. Bogaerts
Plasma Sources Sci. Technol., 23, 045004 (2014)
(Selected by the editors of Plasma Sources Science and Technology as one of the “Highlights of 2014")