Indoor air bioremediation: Botanical biofiltration for sustainable abatement of VOCs. 01/11/2023 - 31/10/2025

Abstract

The indoor environment contains up to five times higher concentrations of air pollutants than outdoors. People spend > 90% of their time indoors, where a group of pollutants "volatile organic compounds" (VOCs) is of concern since even low concentrations are detrimental to our health. Their traditional treatment involves techniques that demand high energy consumption, generate by-products, and do not degrade VOCs. Hence, a shift to more sustainable technologies is required. Biofiltration allows the biodegradation of VOCs by employing microorganisms. Our project merges biofiltration with phytoremediation, translating it into a botanical biofilter (BB). A consists of a substrate and botanical compartment with bacteria that grant more degradation mechanisms, making it more robust. Nevertheless, research is limited in this field, and disparities exist regarding BB's design, operation, and efficiency. Furthermore, clear relationships between a BB and an indoor environment are absent, limiting the spread of the technology. Our study will overcome the discrepancies by combining experiments, modeling, and coworking with the indoor air and green wall sectors. (i) BB systems will be acclimated and bioaugmented; (ii) their VOC removal capacity will be evaluated; and (iii) a comprehensive multiphysics model will be developed to optimize the technology. Finally, (iv) BB will be tested in indoor settings to create a knowledge platform to position BB in the indoor air purification sector.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project