The use of plasma for various medical applications, i.e., so-called “plasma medicine”, is gaining increasing interest, e.g., for sterilisation and decontamination purposes, for wound healing, the treatment of skin diseases, dental cavities, etc. In recent years, a lot of attention goes to cancer treatment, where promising results have been obtained already, both in vitro and in vivo. Plasma appears to be able to attack a wide variety of cancer cells, without damaging healthy cells. The two most commonly used plasma sources for this purpose are a plasma jet and dielectric barrier discharge (DBD) plasma. We study the chemistry in an argon plasma jet expanding in humid air, as well as DBD plasmas, in contact with liquid medium, by means of chemical kinetics and fluid dynamics modelling, to elucidate which plasma species are important for biomedical applications, i.e., mainly reactive oxygen species (ROS) and reactive nitrogen species (RNS). We have also studied the interaction of ROS with bacterial cell wall components to better understand the atomic-scale mechanisms of bacteria killing (for plasma-based sterilisation, but also for wound treatment, dental treatment, etc). Currently we are mainly focussing on plasma for cancer treatment, studying the interaction of ROS (and RNS) with various components in human cells, like DNA, proteins, and phospholipids in the plasma membrane of cells, to understand (among others) whether and how ROS (and RNS) can penetrate through the membrane and enter the cell, and/or give rise to phospholipid (per)oxidation and pore formation in the membrane. In addition, we study the effect of plasma oxidation on the function and structure of various proteins, important for cancer treatment, including immunotherapy. Last but not least, we are also doing experiments on plasma treatment of various types of cancer cells. We mainly focus on melanoma, glioblastoma, pancreatic cancer and head and neck cancer. We perform in-vitro experiments (in 2D cell cultures, but also in 3D models, that are closer to real tumors, like spheroids and organoids, as well as the in-ovo model, and we also perform in-vivo experiments. These experiments are, in collaboration with CORE (E. Smits, Oncology, Faculty of Medicine and Health Care).
Key publications
Injectable plasma-treated alginate hydrogel for oxidative stress delivery to induce immunogenic cell death in osteosarcoma.
M. Živanic, A. Espona-Noguera, H. Verswyvel, E. Smits, A. Bogaerts, A. Lin and C. Canal
Adv. Functional Mater., 2023, 231205 (2023)
Inactivation of SARS-CoV‑2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection.
M. Sahun, A. Privat-Maldonado, A. Lin, N. De Roeck, L. Van der Heyden, M. Hillen, J. Michiels, G. Steenackers, E. Smits, K.K. Ariën, P.G. Jorens, P. Delputte, and A. Bogaerts
ACS Sustain. Chem. Eng., 11, 5206-5215 (2023)
The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies.
M.C. Oliveira, H. Verswyvel, E. Smits, R.M. Cordeiro, A. Bogaerts and A. Lin
Redox Biology, 57, 102503 (2022)
The effect of local non-thermal plasma therapy on the cancerimmunity cycle in a melanoma mouse model.
A. Lin, J. De Backer, D. Quatannens, B. Cuypers, H. Verswyvel, E. Cardenas De La Hoz, B. Ribbens, V. Siozopoulou, J. Van Audenaerde, E. Marcq, F. Lardon, K. Laukens, S. Vanlanduit, E. Smits and A. Bogaerts
Bioeng. Transl Med., 2022, e10314 (2022) and its supporting information.
Oxidative damage to hyaluronan–CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy.
M. Yusupov, A. Privat-Maldonado, R.M. Cordeiro, H. Verswyvel, P. Shaw, J. Razzokov, E. Smits and A. Bogaerts
Redox Biology, 43, 101968 (2021)
Oxidation of innate immune checkpoint CD47 on cancer cells with non-thermal plasma.
A. Lin, J. Razzokov, H. Verswyvel, A. Privat-Maldonado, J. De Backer, M. Yusupov, E. Cardenas De La Hoz, P. Ponsaerts, E. Smits and A. Bogaerts
Cancers, 13, 579 (2021)
Critical evaluation of the interaction of reactive oxygen and nitrogen species with blood to inform the clinical translation of nonthermal plasma therapy.
A. Lin, E. Biscop, C. Breen, S.J. Butler, E. Smits and A. Bogaerts
Ox. Med. Cell. Long., 2020, 9750206 (2020)
Cold atmospheric plasma treatment for pancreatic cancer - The importance of pancreatic stellate cells.
R. Verloy, A. Privat-Maldonado, E. Smits and A. Bogaerts
Cancers, 12, 2782 (2020)
Influence of cell type and culture medium on determining cancer selectivity of cold atmospheric plasma treatment.
E. Biscop, A. Lin, W. Van Boxem, J. Van Loenhout, J. De Backer, C. Deben, S. Dewilde, E. Smits, and A. Bogaerts
Cancers, 11, 1287 (2019)
Non-thermal plasma as a unique delivery system of short-Lived reactive oxygen and nitrogen species for immunogenic cell death in melanoma cells.
A. Lin, Y. Gorbanev, J. De Backer, J. Van Loenhout, W. Van Boxem, F. Lemière, P. Cos, S. Dewilde, E, Smits and A. Bogaerts
Adv. Sci., 2019, 1802062 (2019)
Reduction of human glioblastoma spheroids using cold atmospheric plasma: The combined effect of short- and long-lived reactive species.
A. Privat-Maldonado, Y. Gorbanev, S. Dewilde, E. Smits and A. Bogaerts
Cancers, 10, 394 (2018)
Transport and accumulation of plasma generated species in aqueous solution.
C.C.W. Verlackt, W. Van Boxem and A. Bogaerts
Phys. Chem. Chem. Phys., 20, 6845-6859 (2018)
Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity.
W. Van Boxem, J. Van der Paal, Y. Gorbanev, S. Vanuytsel, E. Smits, S. Dewilde and A. Bogaerts
Scientif. Rep., 7, 16478 (2017) including its supplementary information.
Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
M. Yusupov, J. Van der Paal, E.C. Neyts and A. Bogaerts
Biochim. Biophys. Acta, 1861, 839-847 (2017)
Hampering effect of cholesterol on the permeation of reactive oxygen species through phospholipids bilayer: possible explanation for plasma cancer selectivity.
J. Van der Paal, C. Verheyen, E.C. Neyts and A. Bogaerts
Scientif. Rep., 7, 39526 (2017) and its supplementary information.
Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress.
J. Van der Paal, E.C. Neyts, C.C.W. Verlackt and A. Bogaerts
Chem. Sci., 7, 489-498 (2016)
Multi-level molecular modelling for plasma medicine.
A. Bogaerts, N. Khosravian, J. Van der Paal, C.C.W. Verlackt, M. Yusupov, B. Kamaraj and E.C. Neyts
J. Phys. D: Appl. Phys., 49, 054002 (2016)
Reaction pathways of biomedically active species in an Ar plasma jet.
W. Van Gaens and A. Bogaerts
Plasma Sources Sci. Technol., 23, 035015 (2014)(Selected by the editors of Plasma Sources Science and Technology as one of the “Highlights of 2014")
Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls.
M. Yusupov, E.C. Neyts, U. Khalilov, R. Snoeckx, A.C.T. van Duin and A. Bogaerts
New J. Phys., 14, 093043 (2012)(Selected as one of the "IOPselect” publications)