Research team
Goal-Oriented Process Control using Constraint-Guided Model-Based Reinforcement Learning.
Abstract
Due to its strong economic impact, the field of process control has received much research interest over the years. Whilst traditional control methods have been used in the industry for decades, the application of Machine Learning (ML) has not been properly assessed. An interesting novel field withing ML is Reinforcement Learning (RL), which has repeatedly improved the state-of-the-art (SOTA) in the control of complex systems. Consequently, applying this technique to industrial process control has the potential of strongly improving process efficiency. On the one hand, this leads to reduced cost, resource usage and energy requirements for some of the biggest industries worldwide. On the other hand, this opens a new avenue for collaboration between academics and industry. This project aims to research techniques that are centered around applying RL to industrial process control by developing goal-oriented agents that effectively capture the expectations of the user. (1) An agent with an accurate latent world model will be developed with SOTA performance and strong reasoning capabilities. (2) This agent is extended with a reverse imagination model to reconstruct physical states from latent states. State constraints are applied to these physical states based on expert knowledge to create an intuitive framework for guiding the agent. (3) The agent is then transferred from simulation to reality using offline data to align the internal world model with the real-world environmentResearcher(s)
- Promoter: Mercelis Siegfried
- Co-promoter: Anwar Ali
- Co-promoter: Mets Kevin
- Fellow: Troch Arne
Research team(s)
Project type(s)
- Research Project
Goal-Oriented Process Control by Including Expert Knowledge in Model-Based Reinforcement Learning using Soft Constraints.
Abstract
Due to its strong economic impact, the field of process control has received much research interest over the years. Whilst traditional control methods have been used in the industry for decades, the application of Machine Learning (ML) has not been properly assessed. An interesting novel field withing ML is Reinforcement Learning (RL), which has repeatedly improved the state-of-the-art (SOTA) in the control of complex systems. Consequently, applying this technique to industrial process control has the potential of strongly improving process efficiency. On the one hand, this leads to reduced cost, resource usage and energy requirements for some of the biggest industries worldwide. On the other hand, this opens a new avenue for collaboration between academics and industry. This project aims to research techniques that are centered around applying RL to industrial process control by developing goal-oriented agents that effectively capture the expectations of the user. (1) An agent with an accurate latent world model will be developed with SOTA performance and strong reasoning capabilities. (2) This agent is extended with a reverse imagination model to reconstruct physical states from latent states. State constraints are applied to these physical states based on expert knowledge to create an intuitive framework for guiding the agent. (3) The agent is then transferred from simulation to reality using offline data to align the internal world model with the real-world environment.Researcher(s)
- Promoter: Hellinckx Peter
- Co-promoter: Mercelis Siegfried
- Fellow: Troch Arne
Research team(s)
Project type(s)
- Research Project