Tunable opto-electronics in periodically strained two-dimensional materials. 01/11/2020 - 31/10/2024

Abstract

Periodic structures and flat bands realized experimentally in two-dimensional (2D) materials have recently proven to be a fertile ground for novel physics. I will take advantage of existing expertise and collaborations at CMT research group in order to propose periodically strained configurations of 2D materials, e.g. graphene, transition metal dichalcogenides or phosphorene, for the purpose of exploring novel opto-electronic phenomena related to (flat) electronic mini-bands or excitonic bands. To do so, I will first use numerical simulations to investigate how strong periodic strain modulations of several types can be engineered in 2D materials. Then, I will assess how these different types of modulations introduce band renormalization and how the latter, in its turn, affects optical and electronic properties of the 2D crystals in monolayer and multilayer form. In doing so, I will also be able to relate the role of external effects, such as applied electric fields, to the opto-electronic properties of these strained crystals. The external fields and periodic strains can function as a tuning knob for the opto-electronic response. Finally, I will investigate more deeply how periodic strain fields affect its excitonic properties. In this project, I will make use of the close collaborations of the CMT group with various experimental groups worldwide. The research is theoretical in nature, but I will repeatedly link my results to experiments to maximize impact of the research.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project