Research team
Early effects of air pollution on respiratory function and neurobehavioral abilities in children, and the influence of lifestyle changes to reduce exposure.
Abstract
Particulate matter (PM) and black carbon (BC) exposure pose a major environmental risk factor to our health, since it is estimated to have caused 4.2 million premature deaths in 2016. Although a significant amount of research has been invested in determining health effects related to air pollution on adults, still relatively few research exists on the most vulnerable part of the population, namely children. More specifically, research is missing on acute responses on respiratory functioning (RF) and on neurobehavioral abilities (NBA) of children due to PM and BC pollution. Children's exposure to atmospheric pollution is of special concern because their immune system, lungs and neuropsychological abilities are not fully developed yet when exposure begins, raising the possibility of more severe health outcomes than observed in adults. This project aims at determining the acute impacts of (dynamic) air pollution exposure on healthy children's RF and NBA. To do so, this project will conduct a monitoring campaign at the school and home environment of children of age 9-11, to evaluate PM and BC exposure and its short-term effect on RF and NBA. In extend, the project will combine high-resolution air quality monitoring of PM and BC using mobile sensors, with early RF and NBA responses, in order to monitor students on their way to and from school. With changes in behavior and a shift in transport modes, we then aim to observe possible changes in effects on RF and NBA.Researcher(s)
- Promoter: Samson Roeland
- Co-promoter: Lamote Kevin
- Co-promoter: Verhulst Stijn
- Fellow: Hendrickx Hanne
Research team(s)
Project type(s)
- Research Project
Early effects of air pollution on respiratory function and neurobehavioral abilities in children, and the influence of lifestyle changes to reduce exposure.
Abstract
Particulate matter (PM) and black carbon (BC) exposure is a major environmental risk factor to our health since it is estimated to have caused 4.2 million premature deaths in 2016. Although a significant amount of research has been invested in determining health effects related to air pollution on adults, still relatively few research exists on the most vulnerable part of the population, namely children. More specifically, research is missing on acute responses on respiratory functioning (RF) and on neurobehavioral abilities (NBA) of children due to PM and BC pollution. Children's exposure to atmospheric pollution is of special concern because their immune system, lungs and neuropsychological abilities are not fully developed yet when exposure begins, raising the possibility of more severe health outcomes than observed in adults. This project aims at determining the acute impacts of (dynamic) air pollution exposure on children's RF and NBA. To do so, this project will conduct a monitoring campaign at the school and home environment of children of age 9-11, to evaluate the exposure to PM and BC and its short-term effect on RF and NBA. In extent, the project will combine high-resolution air quality monitoring of PM and BC using mobile sensors, with early RFand NBA responses, in order to monitor students on their way to and from school. With changes in behavior and a shift in transport modes, we then aim to observe possible changes in effects on RF and NBA.Researcher(s)
- Promoter: Samson Roeland
- Co-promoter: Lamote Kevin
- Co-promoter: Verhulst Stijn
- Fellow: Hendrickx Hanne
Research team(s)
Project type(s)
- Research Project