Research team
Expertise
Mass spectrometry, metabolomics and proteomics method development on new biology of cable bacteria
Unraveling the molecular core of conductivity in cable-bacteria nanowires for circular bioelectronics (ReNiStor).
Abstract
Achieving sustainability and circularity in electronicsis a grand societal challenge that requires urgent action. The production of electrical components is energy intensive and puts a burden on the environment and resources. E-waste represents the world's largest growing waste-stream and is increasing through "Internet of Things". Microbially produced, bio-based electronics provide a promising sustainable alternative, which can be produced from renewable feedstocks and provides better biodegradation and can be extensively tuned with genetic or chemical modifications. Cable-bacteria are unique class of sediment dwelling, sulphate-oxidizing microbes, whose lifestyle has evolved entirely around long range (cm scale) conductivity. Amongst conductive materials in biology, the conductive cores in the periplasmic fibres of cable-bacteria show the highest conductivity by a wide margin and should form a primary starting point for bioelectronics design. Apart from tentative models on the fibre structure, little is known on the molecular basis and mechanism behind their conductivity, which seems to revolve around an entirely novel Ni/S cofactor. To understand the mechanism behind this remarkable biological conductivity, ReNiStor (Responsible electronics from Nickel Sulphur cofactor) aims to investigate the molecular composition of the novel cofactor, as well as it's coordination chemistry and its oxidation state. By integrating orthogonal high-end spectroscopic techniques, mass spectrometric methods and chemical imaging, the identity of the conductive molecule and its role in within the fibres will be analyzed, so that it can be subsequently produced in vitro or form a template for the design of new biomolecules. This innovation will clear the path for electronics to make the essential transition from the fossil-based to the bio-based economy, enabling radically new production and recycling pathways.Researcher(s)
- Promoter: Meysman Filip
- Fellow: Kleikamp Hugo
Research team(s)
Project website
Project type(s)
- Research Project