Abstract
River deltas are hotspots of human activity, but their vulnerability to flood risks is increasing due to climate warming and worldwide conversion of natural floodplains into human land use (LU). Although previous studies have demonstrated that natural wetlands can play a key role in reducing extreme high water levels on small to intermediate scales (~1 – 10 km²), limited knowledge exists on how wetland conversion to human LU affects amplification of high water levels at the scale of whole deltas (~10² - 10³ km²). This particularly holds true for tropical deltas, where mangrove conversion to aquaculture is widespread and where extreme high water levels are caused by specific climate fluctuations such as El Niño. This project aims to yield a fundamental understanding on how the spatial configuration of mangrove versus aquaculture areas impacts the distribution of high water levels in the Guayas delta (Ecuador), where El Niño is the main driver of extreme high water level events. A combination of field measurements, analysis of existing data and hydrodynamic modelling will be used to reach novel scientific insights on the effects of El Niño and mangrove deforestation on high water levels in a tropical delta. Such knowledge is relevant to support sustainable development of delta societies.
Researcher(s)
Research team(s)
Project type(s)