Abstract
Environmental pressure, urbanisation and resource intensity have shifted the focal point of sewage treatment from public health protection to resource efficiency and recovery. Centralized sanitation is limited in its recovery potential while implementing extreme decentralization may be infeasible in a fast enough timeframe. As urine is highly concentrated in N, P and micropollutants, its decentralised treatment has promising application potential. This proposal argues that diverted urine can provide an overall bigger benefit when seen as a multi-resource product used within system boundaries of urban sanitation, rather than exported outside as a fertiliser or as N2. We hypothesize that the urban sanitation system can significantly improve its resource efficiency and sustainability by decentralized alkalinization, nitrification and activated carbon treatment to generate a multi-component (COD, N, S, P) benefit. Technologies and control strategies, such as energy-efficient membrane oxygenation and nitrified urine dosing in sewers, will be investigated and integrated in terms of kinetics, microbiomes, emissions and overall performance. This paradigm shift will lead to lower operational costs, lower greenhouse gas emissions, better odour management, intensification at the central level and lower energy consumption than both a conventional centralised sanitation system as well as a system with extreme decentral urine management for nutrient recovery or efficient removal.
Researcher(s)
Research team(s)
Project type(s)