Research team

Fast industrial metrology and inspection based on CAD data and phase contrast measurements. 01/11/2022 - 31/10/2026

Abstract

Conventional X-ray imaging based on attenuation contrast is widely known through e.g. medical chest radiographs. By acquiring thousands of X-ray radiographs, a 3D representation of the microstructure of an object can be reconstructed, which has many applications in industrial inspection and metrology of manufactured materials. X-ray imaging offers two more contrast types: phase contrast (due to refraction at interfaces) and dark-field contrast (ultra-small angle scattering). The latter two effects can only be observed with specialized grating hardware, such as in the edge-illumination (EI) technique. Phase contrast can be up to 1000 times stronger than attenuation contrast for 'soft' materials, such as polymers. Unfortunately, EI requires at least three measurements to separate the different contrasts, leading to long processing times. This project aims at exploiting phase contrast properties for efficient inspection and metrology of manufactured objects. To limit the number of measurements, algorithms equipped with prior knowledge in the form of 3D mesh models of investigated samples will be developed. Few-view inspection and metrology techniques will then be developed in which measured phase contrast radiographs are compared to simulated radiographs from the reference CAD projections. To enable metrology, adaptability of the surface mesh to acquired radiographs will be implemented. The methods will be validated on manufactured objects containing plastics and metals.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project