Post-quench prethermalization and thermalization dynamics in Bose gases: extension of the hierarchy of correlations method to the strongly interacting regime, multicomponent systems and finite temperature. 01/11/2019 - 31/10/2023

Abstract

When a gas of atoms is cooled close to absolute zero, it undergoes a transition to a Bose-Einstein condensate, a quantum mechanical state of matter characterized by frictionless flow or "superfluidity". In this project, we investigate what happens to such a superfluid when a parameter such as the interatomic interaction strength is suddenly changed or "quenched". In particular, the project focuses on how the Bose-Einstein condensate evolves towards the new equilibrium state. Several experimental observations, such as the existence of a prethermal steady state and universal dynamics, pose theoretical challenges that we plan to resolve by taking into account correlations between more than two atoms in our model. The behavior of strongly interacting ultracold atom gases is furthermore archetypical of a broad range of quantum many body systems ranging from neutron stars to superconductors. The research topic thus has many applications, and moreover touches on fundamental questions regarding the role of thermal equilibrium in quantum systems.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project