Research team

Data fusion and structured input and output Machine Learning techniques for automated clinical coding. 01/01/2014 - 31/12/2017

Abstract

This project will improve the state of the art in automated clinical coding by analyzing heterogeneous data sources and defining them in a semantic structure and by developing novel data fusion and machine learning techniques for structured input and output.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Development of an automated software platform to support and improve the quality of clinical coding. 01/01/2013 - 31/12/2013

Abstract

The goal of this project is to develop algorithms and software to improve the quality of the clinical coding process in hospitals, and to design a valorization plan. The algorithms will automatically identify coding anomalies and suggest codes using state-of-the-art machine learning techniques. We will define a business development plan, attract potential customers, and aim to attract follow-up funding.

Researcher(s)

  • Promoter: Van den Bulcke Tim
  • Co-promoter: Goethals Bart
  • Co-promoter: Luyckx Kim
  • Co-promoter: Luyten Leon
  • Co-promoter: Smets Koen

Research team(s)

Project type(s)

  • Research Project