Research team
Novel analytical and environmental insights in the human exposure to Synthetic ANTioxidants by Advanced mass spectrometric workflows (SANTA).
Abstract
In the indoor environment, children are exposed to many contaminants of emerging concern, many of them being largely understudied. Two groups of such contaminants, namely the high molecular weight phenolic antioxidants (HMW SPA) and the organic phosphite antioxidants (OPA), have received limited attention. Human exposure to these novel antioxidants (AOXs) has not yet been investigated in Europe. Therefore, this project aims to develop mass spectrometric methods to assess human exposure to novel AOXs, including the first human biomonitoring assessment on AOX metabolites. These innovative methods will employ liquid chromatography coupled to tandem mass spectrometry (MS/MS), including target and non-target MS screening and novel acquisition approaches, such as iterative MS/MS. Different actions will be undertaken to assess the exposure of children to novel AOXs in the indoor environment. First, the degradation and human biotransformation products of novel AOXs will be identified and quantified. Second, in vitro bioaccessibility studies will allow for the implementation of this critical variable within exposure through ingestion. As a result, the quantification of AOX in samples relevant for children's exposure (e.g. dust and consumer products) and children's urine will provide a first overview of their exposure to novel AOXs in Flanders. The developed approaches can be used in upcoming European biomonitoring programs, e.g., PARC, to assess exposure to AOXs on a larger scale.Researcher(s)
- Promoter: Covaci Adrian
- Co-promoter: van Nuijs Alexander
- Fellow: Roggeman Maarten
Research team(s)
Project type(s)
- Research Project
Analytical and environmental novel insights in the human exposure to Synthetic ANTioxidants by Advanced mass spectrometry (SANTA)
Abstract
Within the indoor environment, humans are exposed to a diverse group of contaminants of emerging concern (CECs), who remain largely understudied. Two groups of ubiquitous CECs, namely the high molecular weight phenolic antioxidants (HMW SPA) and the organic phosphite antioxidants (OPA), have received little attention in literature. These novel antioxidants exposure has only been accessed in Asia and North-America by applying methods that focus on a small subset of novel antioxidants (AOXs). Therefore, the goal of this project is to develop both qualitative and quantitative exposure methods, including a human biomonitoring method for novel AOXs metabolites. These innovative methods will be applied in Flanders, providing the first exposure studies in Europe for the novel AOXs. This goal will be achieved by employing state of the art mass spectrometry (MS) equipment coupled to liquid or gas chromatography. By developing target and non-target MS screening methods and applying novel techniques such as iterative MS within the screening methods. This project will result in the first biomonitoring method of novel AOX metabolites accessing human exposure in Flanders. The developed methods can be used in upcoming European biomonitoring programs, accessing exposure on a larger scale. In conclusion, this project will be of great added value as it will be the first in Europe to access human exposure to novel antioxidants by employing innovative techniques.Researcher(s)
- Promoter: Covaci Adrian
- Co-promoter: van Nuijs Alexander
- Fellow: Roggeman Maarten
Research team(s)
Project type(s)
- Research Project