Abstract
Forests constitute a large and persistent carbon stock, which has increased over the past few decades. While the exact mechanisms remain unclear, it has been suggested that increased inorganic nitrogen input resulting from human activities has contributed to the observed increase in terrestrial carbon stocks. However, this nitrogen-induced carbon sequestration appears to vary widely across geographic locations, urging for a better understanding of its underlying mechanisms. Given the importance of microorganisms in both the carbon and nitrogen cycle, we expect that they play a central role in driving nitrogen-induced carbon sequestration. This project aims to investigate the role of microbial communities in driving nitrogen-induced carbon sequestration using a combination of a large-scale field study and a mesocosm experiment. We will collect litter and soil samples from temperate forests across a large nitrogen deposition gradient in Europe and use advanced molecular and laboratory methods to determine soil organic matter composition, fungal and bacterial communities and their functioning. To elucidate the distinct contributions of direct (increased nitrogen) and indirect effects (altered soil microbiome) of nitrogen deposition on soil functioning we will conduct a mesocosm experiment. Overall, our findings are expected to enhance our understanding of the role microbes play in coupling the carbon and nitrogen cycle and how global change is affecting forest carbon stocks.
Researcher(s)
Research team(s)
Project type(s)