Abstract
Lactobacillaceae are the best documented family of beneficial bacteria with crucial roles in human reproduction, fermented foods, pollinator health, and other "one health"-related functions. However, we know surprisingly little about the beneficial activities of lactobacilli, beyond lactic acid production. Recently, we discovered that, despite the relatively small genomes of most Lactobacillaceae (about 3 Mbp), many species do contain large gene clusters, such as non-ribosomal peptide synthetases (NRPS). Preliminary results indicate unusual chemistry and valuable genetic elements and metabolites, which could contribute to insights into microbial ecology and synthetic re-engineering of non-ribosomal peptides (NRPs). This diverse class of molecules is known to elicit different effects, ranging from antimicrobial activity to immunomodulation and anti-cancer effects. We believe these molecules play a key role in explaining the lactobacilli dominance in specific niches, such as the human vagina and vegetable fermentations. Using in silico analysis, the diversity of NRPS systems in Lactobacillaceae will be classified. The most interesting NRPs will be chemically and functionally characterized in view of their mode of action. Using genetic engineering, we will gain more insight into the important features of these NRPs and explore possibilities for enhancing activity.
Researcher(s)
Research team(s)
Project type(s)