Research team
Pacifix II: Framework for Patient-Specific Plate Fixation of bone fragments: application to distal radius fractures.
Abstract
The Pacifix II project is a continuation of the results of the Pacifix I project. During the Pacifix I project we developed a framework to segment and reduce (put back together) the fragments of a distal radius bone fracture. In the Pacifix II project we will develop software tools to automatically prepare the surgery. The software will determine which surgical plate is the best suited for the patient and his fracture by virtually fitting the plate on the reduced bone. It will generate a pre-operative plan with an optimized position of the plate. Furthermore, the position and length of the screws will be optimized. To reduce the time in the operation room, surgical guides that are a physical template of the plate, screws and bone will be developed. Therefore, there is only one way to fixate the plate and screws to the bone.Researcher(s)
- Promoter: Sijbers Jan
- Co-promoter: Vanhees Matthias
Research team(s)
Project type(s)
- Research Project
Pacifix (Part I): Framework for Patient-Specific Plate Fixation of bone fragments: application to distal radius fractures.
Abstract
In the Pacifix project, an algorithm to automatically segment and reduce the segments of a fractured bone will be developed. This framework will help clinicians to gain better insight in the 3D anatomy of the fracture and thus plan surgical procedures. This need arises for all bone fractures near joints, but Pacifix is focusing on the most common (32K/y in Belgium): distal radius fractures. Pacifix combines shape modeling, artificial intelligence, and clinical expertise to, based on CT data, enable the surgeon 1) to interact with 2D/3D images preoperatively, and 2) to design a patient-specific pre-operative plan. In the Pacifix project, we will offer software tools to enable an automated CT analysis. This will save the surgeon time in preparing a pre-operative plan and in performing the surgery. In addition, the algorithm will generate a more qualitative reduced result, which will better resemble the original anatomy of the bone. These algorithms are also valuable for a subsequent trajectory, to virtually design personalized fixation plates. Nowadays such implants cause friction on the soft tissues due to a poor fit and there is a lack of sufficient fixation options. Hardware failure, tendon ruptures and/or malunions occur in up to 36% of the cases.Researcher(s)
- Promoter: Sijbers Jan
- Co-promoter: Vanhees Matthias
Research team(s)
Project type(s)
- Research Project