Research team

Biomechanical analysis of manoeuvring in boxfish, a model for bioinspired design of autonomous underwater vehicles. 01/10/2022 - 30/09/2026

Abstract

Autonomous underwater vehicles (AUVs) are of prime interest for future development due to their versatile applicability in aquatic tasks. However, achieving sufficient hydrodynamic performance proves to be challenging. Since biological systems greatly outperform AUVs in manoeuvrability, there is a strong basis for bioinspired design. Boxfish (Ostraciidae and Aracanidae) are already recognised as excellent candidates to inspire a new generation of slow-speed manoeuvring AUVs. Their body consists of a rigid, bony encasing, the carapace, which is moved by action of their five fins. Several prototypes have been developed but the lack of fundamental, biomechanical knowledge on how boxfish execute their manoeuvres severely hampers advancements. The proposed study will first analyse the variability in hydrodynamic performance (i.e. drag force, static and dynamic rotational stabililty) among the large interspecific diversity of boxfish carapace shapes. Next, an in-depth analysis of manoeuvring dynamics in Ostracion cubicus will be performed by (1) quantifying 3D-kinematics of an extensive set of manoeuvres, (2) determining the complete set of inertial and hydrodynamic properties of the body, (3) determining the instantaneous force magnitude and vector orientation of the individual fins using state-of-the art techniques in computational hydrodynamical modelling, and (4) combining all above-mentioned knowledge to simulate a boxfish during manoeuvring through forward dynamics. This novel research will lay a solid foundation for future work to guide design decisions in translation to more efficient AUV prototypes.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project