Research team

Ionic transport and phase transitions in alkali-intercalated two-dimensional materials under active manipulation. 01/11/2019 - 31/10/2023

Abstract

Ionic transport in low-dimensional materials plays the key role in novel concepts of energy harvesting and storage devices. Recent experimental progress allowed fabrication of extremely narrow (comparable to the size of an atom, where quantum effects dominate) and clean channels between 2D materials that are weakly bound together. The flow of ions or molecules is such channels was found to be extremely swift, which was attributed to high pressure induced by such a tight confinement. This pressure also made atoms pack closer together and produce a completely different composite structure by forming bonds with the confining material. The narrowness of the channels allows only a few layers of atoms to move through, in a fashion tunable by applied pressure, lateral strain, or electric field. Once understood, the advanced ionic transport under quantum confinement has potential to boost performance and capacity of batteries. Furthermore, the bonding of ions to the confining material can completely change the electronic phase of the system, so that it becomes e.g. superconducting at low temperatures, and useful for dissipationless electronics. Therefore, the main objective of my project is to investigate the mechanisms of ionic flow in strongly confined channels, how to manipulate ionic ordering and flow therein, and to identify the emergent phase transitions in the systems of interest – to enable novel concepts for blue-energy, miniaturized battery, and nanoelectronics applications

Researcher(s)

Research team(s)

Project type(s)

  • Research Project