Research team
Development of a biomonitoring tool to estimate risks of perfluoroalkyl acids (PFAAs) through consumption of self-cultivated food products.
Abstract
Perfluoroalkyl acids (PFAAs) are a diverse family of anthropogenic chemicals with unique physicochemical properties that have resulted in numerous industrial and commercial applications. Their broad application and bioaccumulation potential has led to their worldwide presence in the environment and detection in biota including humans. Over the last decade, consuming food products by humans from self-cultivation has become a remarkable trend in rural, urban and even industrial areas. Nevertheless, PFAAs can enter the food chain due to their widespread use and food intake has been identified as a major pathway for human exposure to PFAAs. Despite the ubiquitous presence and known bio accumulation potential of PFAAs, there is no overview of their spatial distribution pattern or degree of exposure via dietary intake. Nevertheless, it is crucial to solve these two major knowledge gaps to reveal the health risks associated with PFAA exposure. Therefore, the objectives of this proposal are (I) investigate the accumulation of PFAAs in important food items (chicken eggs and vegetables) from private gardens and the influence of soil characteristics, (II) develop a biomonitoring tool that estimates the risks associated with PFAA contamination in food, (III) deliver novel insights in the toxic properties and effects of PFAAs in chickens and (IV) investigate if PFAA concentrations in the food items exceed safety threshold values for human consumption.Researcher(s)
- Promoter: Bervoets Lieven
- Co-promoter: Eens Marcel
- Fellow: Lasters Robin
Research team(s)
Project type(s)
- Research Project
Development of a biomonitoring tool to estimate health risks of perfluoroalkyl acids (PFAAs) through consumption of seld-cultivated and commercial food products.
Abstract
Perfluoroalkyl acids (PFAAs) are a diverse family of anthropogenic chemicals with unique physicochemical properties that have resulted in numerous industrial and commercial applications. Their broad application and bioaccumulation potential has led to their worldwide presence in the environment and detection in biota including humans. Over the last decade, humans consuming food products from self-cultivation and local companies has become a remarkable trend in rural, urban and even industrial areas. Nevertheless, PFAAs can enter the food chain due to their widespread use and food intake has been identified as a major pathway for human exposure to PFAAs. Despite the ubiquitous presence and known toxic effects of PFAAs, there is no overview of their spatial distribution pattern or degree of exposure via dietary intake. Nevertheless, it is crucial to solve these two major knowledge gaps to reveal the health risks associated with PFAA exposure. Therefore, I will (i) develop a biomonitoring tool that estimates the risks associated with PFAA contamination in food, (ii) clarify the spatial distribution pattern of PFAAs and (iii) deliver novel insights in the toxic properties and effects of PFAAs. My research outcome will significantly improve the monitoring capabilities of regulatory agencies while the outcome of the studied PFAA effects will be of great relevance for the poultry industry, especially companies located within proximity of PFAA producing and processing industry.Researcher(s)
- Promoter: Bervoets Lieven
- Co-promoter: Eens Marcel
- Fellow: Lasters Robin
Research team(s)
Project type(s)
- Research Project