Synthesis of novel large-pore MOFs as tunable catalytic nanoreactor. 01/11/2019 - 31/10/2023

Abstract

Everybody today has heard about the increasing need of having cheap, environmentally sustainable and green processes. The world is full of these high-sounding and fancy terms, but how to achieve them in practice? There are several ways to improve a chemical process, but most often studies are based on catalysts: the "accelerators" of chemical reactions. Catalysts are expensive, suffer from low stability and are difficult to separate/reuse, but their role is vital for pharmaceutical, agro and fine chemical industries. The immobilization of the catalysts on a support can solve all the mentioned problems. We propose a scaffold which has never been used before: Metal Organic Frameworks (MOFs). MOFs are networks made by ion metals and rigid linkers. Under appropriate conditions these two parts can assemble a porous material on which we can immobilize the catalysts, making possible their recovery/reuse at the end of the process. The advantages of our scaffolds are immense: uniform, reproducible and controllable manufacture and the possibility to completely engineer the linkers. As a consequence, we can control the whole network structure: we can personalize it, giving new properties to the walls, and tuning the pore size. In other terms: modular haute couture, for the need of the mentioned chemical industries. If you were an industrial stakeholder, wouldn't this sound great to you?

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

New functionalized MOFs for catalytic nanoreactor applications. 01/11/2015 - 31/10/2019

Abstract

This project aims to develop so-called "nanoreactors", which can be seen as an approach to heterogenization of homogeneous catalysis. The key idea is to develop self-assembling large-pore Metal Organic Frameworks (MOFs) via modification/optimization of their organic linkers. Starting from already existing networks, the organic linkers will be further functionalized at the side chains in order to couple them with a catalyst. The catalytic activity of the resulting nanoreactors will be demonstrated and their performance compared with the native catalyst in a homogeneous reaction mixture. As the reactors are crystalline, they have very well-defined pore shapes and sizes, the pores are continuous throughout the structure, and very controllable, reproducible and characterizeable. The project bridges the spearheads of "Materials Characterization" and "Sustainable Development".

Researcher(s)

Research team(s)

Project type(s)

  • Research Project