Abstract
Due to technological advances, the available amount of data has increased exponentially over the last decade. The field of data science (DS) has followed this growth as it provides an indispensable tool for translating data into insight and knowledge. Where DS was traditionally concerned with learning associations in data, it has become clear in recent times that causal relations often provide a deeper understanding of the data and a stronger tool in many practical applications. One of the established approaches to causal modeling is to use a directed acyclical graph (DAG) to represent the causal relations. These DAGs have to be learned based on observed data. Many of the SOTA techniques for DAG learning are very sensitive to anomalies, and yield unreliable results in their presence. We aim to develop methods for DAG learning that remain efficient and reliable under contamination of the data. The project starts by building a solid foundation for the concepts of robustness in DAG learning. Building upon these foundations, we will then proceed to build a general robust DAG learning methodology. The project envisions three different but complementary approaches to the development of robust DAG learning methods. The developed methodology will be evaluated theoretically and empirically, and tested in a variety of real world cases.
Researcher(s)
Research team(s)
Project type(s)