Research team

Expertise

Biomechanical motion analysis (with statistical analysis and interpretation) at the Multidisciplinary Motor Centre of the University Antwerp (M²OCEAN) Effects of a Tai-Chi intervention on sound parameters and bodily movements in marimba players Previous research in Tai Chi philosophy and marimba literature have shown some traces of connection between marimba practice and Tai Chi. As Tai Chi not only is practiced as a martial art form, it is also situated in a philosophical context and the depth of its principles supports the Tai Chi movements (Tai Chi Chuan). The hypothesis is that the development of marimba playing techniques may benefit from the art of Tai Chi as it may assist marimba students to develop a healthy performance approach and exploring a wider range of body movements in marimba practice. Meanwhile, several studies have demonstrated the important aspects in marimba practice, such as: the feature in different grips, sound production, tone color, and expressiveness in musical performance. In order to provide supporting evidences to the hypothesis, this research collaborates with the department of the Rehabilitation Sciences and Physiotherapy (Revaki) and the Acoustic Recording Services (ARS) at the Multidisciplinary Motor Centre of the University Antwerp (M2OCEAN). The research method includes: scientific measurements of the movements of the marimba players who participate in the study in order to collect statistic data; a thematic analysis of the oral interviews with the same participants; an evaluation of the data and measurements by experts of different fields. This research is performed in collaboration between: Royal Conservatoire of Antwerp Prof Jozef Colpaert, Department of Instructional and Educational Sciences Prof Steven Truijen, Department of Rehabilitation Sciences and Physiotherapy Prof Stijn Verwulgen, Department of Product Development Prof Ann Hallemans, Department of Rehabilitation Sciences and Physiotherapy Drs. Jim Lin Chin-Cheng, Royal Conservatoire of Antwerp and Lemmens Institute, Leuven

Development of biomechanical algorithms for cyclists' assessment using the 4D full body dynamic scanner. 01/05/2024 - 30/04/2025

Abstract

Over the years, Belgium has experienced a significant surge in cycling, driven by active policies implemented across various levels of government, from local to federal, and spurred by the impact of the COVID-19 crisis1. The proportion of bicycle users has risen from 8% in 2010 to 12% in recent years. Notably, Flanders leads in cycling popularity at 18%, followed by Brussels at 4%, and Wallonia at 2%, with the Brussels region experiencing a near doubling of cyclists since the onset of the pandemic1. Additionally, the use of speed pedelecs, particularly prevalent in Flanders with around 12,000 registered in 2019, reflects a broader trend, as Belgium saw a total of 53,000 speed pedelecs registered nationally by the beginning of 2022. The Bicycles market in in Belgium is expected to grow by 2.99% (2024-2028) resulting in a market volume of US$1.62bn (1.49 billion euro) in 20282. In this perspective, Belgian professional cyclists occupy a prominent position worldwide and contribute significantly to the country's identity and cycling culture. In this context, this 4D4BIKE project is initiated, focused on the development of biomechanical algorithms for assessing cyclists by using the unique 4D full body scanner. This recently installed scanner provides a markerless 4D (3D over time) human full body shape consisting of a watertight mesh with a density of more than 50,000 points. It incorporates texture with sub-1mm accuracy at 178 3D images per second, obtaining dynamic biometric measurements (such as height and waist circumference) in one second. The 4D4BIKE project integrates advanced 4D scanning by developing algorithms to gain valuable new insights into various aspects of cycling biomechanics, including joint angles, muscle activation patterns and overall body kinetics. Parameters such as balance control and movement asymmetry can also be assessed as a function of metadata (e.g., shape, age and gender) benefiting cyclists, coaches and sports scientists. The integration of 4D scanning with advanced biomechanical algorithms represents an advanced approach to provide a comprehensive personalized assessment of the cyclist and bike to optimize bike fit, improve aerodynamics and ultimately improve overall performance and comfort on the bike. Before the 4D4BIKE services can be offered to industry a number of bottlenecks still need to be addressed: 1) Biomechanical and ergonomic analysis of 4D dynamic body metrics by developing specific algorithms for processing scripts and formats to visualise and analyse cyclists' performance; 2) Validation of the developed algorithms protocols, products, and devices to meet the specific industry and costumer demand.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Comparative study of the mechanism of action of Dry Needling and Botulinum Toxin type A as a treatment for lower limb post-stroke spasticity: a proof of concept controlled trial. 01/04/2023 - 31/03/2026

Abstract

Rationale: Cerebrovascular Accident (CVA) is one of the main causes of morbidity and disability worldwide. A frequent consequence of stroke is spasticity in the affected limbs. Spasticity is a velocity-dependent increase in muscle reflex activity that affects both resting muscle tone (hypertonicity) and voluntary movements. Lower limb spasticity is associated with limitations in walking ability, resulting in an increased incidence of falls, a reduced quality of life and greater caregiver burden. Two treatments for post-stroke spasticity are injection of botulinum neurotoxin (BTX A) and dry needling (DN) to chemically or mechanically disrupt signal transmission at the neuromuscular junction in the affected muscle respectively. Both treatments reduce spasticity and improve functional walking. As BTX A injection has some adverse effects, DN may be an effective, minimally-invasive, non-pharmacological alternative to the more invasive chemical denervation. However, while some local (muscle) mechanisms of action of BTX A and DN have been described, there is little information about their actions at the central (spinal) level, on activity, quality of life and cost-effectiveness. Objectives: The primary objective is to determine the mechanisms of action of BTX A infiltration and DN on lower limb post-stroke spasticity at the central (spinal) level. The secondary objectives are to determine safety and feasibility of each treatment and their effects at muscle and functional levels, quality of life and cost-effectiveness. The primary hypothesis is that DN treatment will be comparable to BTX A and will decrease post-stroke spasticity by decreasing stretch reflex excitability at the central (spinal) level. Improving knowledge of the mechanisms of action of both interventions will lead to more informed treatment prescription and better clinical mobility outcomes for post-stroke patients. Methods: This prospective study will compare BTX A and DN treatment on spasticity relief in people who have sustained a first stroke 3-12 months previously and who have plantar flexor spasticity. Ninety patients will be recruited from 3 centers (30 per site) in Spain, Belgium and Canada. We will use a multiple-baseline time-series design across pairs of subjects matched for age and time since stroke. BTX A will be injected once and DN will be applied once weekly for 12 weeks. Effects will be evaluated before, during and after treatment and at a 4 week follow-up by blinded evaluators. Effects on spasticity will be evaluated at the central (spinal) level using a physiological measure of motoneuronal excitability (Tonic Stretch Reflex Threshold and its velocity sensitivity) and at the muscle level by quantifying morphological changes with ultrasound imaging and the perceived resistance to stretch (Mod-Mod Ashworth Scale). We will also assess effects on gait (Timed Up and Go, 10 Meter Walk Test and instrumented gait analysis) and quality of life (EuroQOL-5D). Cost-effectiveness of each intervention will be determined. A patient Advisory Group will be created to engage patients by asking for feedback during the study and to contribute to results dissemination. Outcomes: Although BTX is the gold standard for post-stroke spasticity treatment, DN treatment has shown to be effective with potentially fewer adverse effects. However, DN has not yet been routinely implemented in clinical practice and there are no comparative studies with BTX A and mechanisms of action remain unknown. This impedes prescription of the best available treatment to post-stroke patients considering spasticity pathophysiology. Results of this feasibility study (proof of concept) will determine the mechanisms of action of both treatments so that future studies with larger samples and other neuropathologies can be developed.

Researcher(s)

Research team(s)

Project website

Project type(s)

  • Research Project

Technology-supported innovative rehabilitation 01/01/2022 - 31/12/2026

Abstract

The scientific targets of the collaboration that the Scientific Research Network aims to achieve within the five coming years. The rapid development of technology and computer science has changed our environment and our way of life enormously over the last decades. However, currently, the use and implementation of new technologies to assist and improve physiotherapy and the rehabilitation process is still in its early stages. The technology that is, or can be used, in rehabilitation can be divided into three categories: i) high tech devices whose price and complexity of use limit their use in specialized centres (i.e., robotic treadmill), ii) devices that can be used by the clinicians in their daily practice (i.e., serious games exercises with virtual reality headset), and iii) systems and solutions that can be used by the patients alone at-home (i.e., mobile health applications, feedback during rehabilitation exercises). At the moment, most of the research centres focus their works on one particular category of technology. While this can be easily understood from a research perspective, this compartmentalization made the translation between the research and clinics rather weak. In particular it does not allow a full integration of these solutions into the conventional rehabilitation pipeline and the synchronization between the different techniques available, or under development, is rather limited. These two aspects mean that, at present, the technology is far from being used to its full potential in the rehabilitation. Another great potential of using technology to support rehabilitation is that different measurements can be taken while patients are performing the rehabilitation, either in the clinic or at home. These set of measurements can be used as innovative outcomes to validate the use of new technologies or drugs and could also be used to monitor the evolution of the patients during the rehabilitation process and adapt the plan according to the real needs and specificities of the patients. Therefore, the aim of this Scientific Research Network is to create a strong network of excellence dedicated to the development and promotion of innovative technology-supported rehabilitation solutions. The main objective is to bring the network as a key player in this field and to increase the quality of the research and the care in Flanders. To achieve this, the specific objectives of this network are to: i) synchronize current and future research on technology-supported innovative interventions by organizing clusters of inter and multidisciplinary specialists across domains (i.e., motor function, cognition, fatigue); ii) join efforts to perform multicentric validation studies to increase the power and the quality of the research, an essential step in determining the level of evidence for new interventions; iii) integrate the different technologies into one pipeline to coordinate and synchronize the different technologies through all the rehabilitation process; iv) initiate discussion with machine learning and AI specialist to analyze the data collected with the new technology and the clinical data, in order to ultimately develop personalized rehabilitation; v) inform and train the professional staff via workshops, guest lectures and dedicated website; vi) inform the patients and public via the organization of general audience events and sharing of general information via the establishment of a website

Researcher(s)

Research team(s)

Project website

Project type(s)

  • Research Project

Support maintenance scientific equipment (REVAKI). 01/01/2017 - 31/12/2024

Abstract

This project represents a research contract awarded by the University of Antwerp. The supervisor provides the Antwerp University research mentioned in the title of the project under the conditions stipulated by the university.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

CHaT service platform, Center for Health and Technology service platform. 01/09/2023 - 31/08/2024

Abstract

Society 5.0 is a vision in which emerging technologies are used as a tool in health. In Medicine 4.0 smart health is required for innovation. In this context, the multidisciplinary interfaculty institute CHaT, Center for Health and Technology, has already more than ten years of experience in methods and algorithms developed using optoelectronic marker-based measurement systems for biomechanical movement and gait analyses. The main drawback of this optical technology is the use of passive markers because it is time-consuming to place the markers on the skeleton of the subject. In addition, occlusions are common since each marker must be detectable by at least 2 cameras at any time in order to be correctly interpolated. Recently, CHaT successfully installed a unique 4D4A lab that consists of a markerless 4D (3D plus time) body scanner. It provides a 3D human full body shape that consists of a watertight mesh with a density of 50,000 points, adding time as a 4th dimension. It includes texture with a sub-1mm accuracy at 178 3D images per second, obtaining more than 100 dynamic biometric measurements (like height and waist circumference) in a second. This offers additional opportunities, such as measuring during COVID time and a free natural movement of the test subject. Parameters such as center of mass, balance control, gait spatiotemporal parameters and movement asymmetry can be assessed in the 4D4A lab also as a function of metadata (e.g., shape, age and gender). Established research results can be redefined, such as mechanical energy estimation approaches on the center of mass and the sum of segmental energies during sports and regular physical activities such as walking and cycling. The 4D scanner provides new scientific insight into movement patterns correlated to different types of body forms and somatotype classification in terms of 4D data. Possible restrictions in the movement of body parts against each other can be assessed in the 4D4A lab, e.g., restriction of range of motion, gait in people with neurological conditions, amputees and obese people. Overall, the 4D4A lab is a solution to improve the efficiency and sustainability of the health care system increasing the effectiveness of the therapy and empowerment of the patients. Before the CHaT service platform is self-sufficient, by providing 4D4A lab services to industry, hospitals and research institutions, a number of bottlenecks still need to be addressed: 1) Validation of the developed algorithms, protocols, products and devices to meet specific customer's demand; 2) Development of a business plan to establish a CHaT service platform to convert 4D high-tech knowledge into a service platform.

Researcher(s)

Research team(s)

Project website

Project type(s)

  • Research Project

Development of biomechanical algorithms in health assessment and of a business plan for future establishment of a service platform for CHaT (Center of Health and Technology). 01/01/2023 - 31/12/2023

Abstract

Society 5.0 is a vision in which emerging technologies are used as a tool in health. In Medicine 4.0 smart health is required for innovation. The multidisciplinary interfaculty institute CHaT (Center for Health and Technology), has already more than ten years of experience in methods and algorithms developed using optoelectronic marker-based measurement systems for biomechanical movement and gait analyses. The main drawback of this optical technology is the use of passive markers because it is time-consuming to place the markers on the skeleton of the subject. In addition, occlusions are common since each marker must be detectable by at least 2 cameras at any time in order to be correctly interpolated. To solve this, a new 4D4A scan lab (4D scanner for Accelerating Advanced Motion Analysis and Application), that is unique in the world was recently installed in CHaT with the goal of opening new frontiers in Medicine 4.0, elevating the University of Antwerp to one of the top universities in the world for Human Modelling and Simulation in Medicine. The 4D4A scan lab offers the possibility to capture the human body in 4D (3D + time) without the use of markers so that close contact is no longer required. This offers some opportunities such as measuring in COVID time and a free natural movement of the test person due to the absence of annoying sticked markers. With an accuracy of less than 1 mm, 178 3D images are recorded per second and processed automatically. In addition, the 4D4A scan lab can extend sparse skeletal movements and static 3D geometric information into accurate new dynamic 4D body measurements such as an arm or abdominal circumference over time. This now opens new applications, not only in basic or clinical research, for example monitoring gait and balance in stroke patients, but also in many industrial sectors, such as biomedical engineering and industrial ergonomics. Before the 4D4A scan lab can be offered as a service to industry, hospitals and research institutions, a number of bottlenecks still need to be addressed: 1) The initialisation in the 4D4A scan lab: preparation, coordination and general management of the 4D4A Lab activities; 2) Simultaneous 4D motion tracking and reconstruction of 4D digital modelling of the human shape, complex geometry, and soft tissue synchronizing different devices; 3) Biomechanical and ergonomic analysis of 4D dynamic body metrics by developing specific algorithms for processing scripts and formats to visualise and analyse with free software packages e.g., Blender (blender.org) and OpenSim (simtk.org/projects/opensim); 4) Validation of the developed algorithms protocols, products, and devices to meet the specific demand from the industry; 5) Development of a business plan for future creation of a service platform for CHaT (Center of Health and Technology) in order to transform 4D high-tech knowledge into a service platform, creating new collaborations resulting in services, patents and spin-offs.

Researcher(s)

Research team(s)

Project website

Project type(s)

  • Research Project

Providing research assets related to the area of Human Digital Twin and Human Digital Modelling. 01/10/2022 - 30/09/2023

Abstract

The object of the services (hereinafter referred to as the "Services") is to provide research assets related to the area of Human Digital Twin and Human Digital Modelling, making use in particular of the 4D4A Lab of the ChaT Institute of Antwerp and complementing research work initiated by LIST's HUMOD research group. More precisely, it consists in building an experimental framework exploiting the 4D scanning lab to build Digital Twins of People in their environment (HDT). For all the scenario proposed, the experiments will concern anthropometrics measurement and the observation of behaviours that are deviating from an ideal reference. Each time, there would be a HDT created and a Digital Twin (DT) of the environment or/and of the other entity with whom the human is interacting. When observations and analyses are made, an HDT+DT formal model is updated with the findings, maintaining the synchronization between the physical entities and their digital model, to prepare for future works where the DT would be exploited for simulations and integrated in Virtual Reality environments.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

The development of a Virtual reality software application to assess and treat visuospatial neglect in central neurological conditions. 01/09/2020 - 31/08/2021

Abstract

After stroke, people can experience several impairments. Besides sensorimotor impairments, stroke often have to deal with cognitive disorders including disorientation in time and space, decreased information processing time and volume, memory problems and attentional deficits. One of these post-stroke attentional deficits is visuospatial neglect (VSN) characterized by impaired awareness for visual stimuli located on the contralesional side of space. People with VSN experience significant postural impairments and a high fall risk. In addition, consequences can be more practical of nature as patients with attentional deficits are, for example, unaware of the traffic lights at street crossings or even traffic in general, but also lack the ability to find products at grocery stores. It is obvious that people dealing with cognitive impairments encounter difficulties in all aspects of ADL (Activities of Daily Living) and community participation, and even lack the ability to live independently at home. Unfortunately, there is to date no adequate way of assessing VSN after neurological impairments with good clinimetric properties such as high ecological validity, reliability and discriminating ability between different modalities of VSN. As a consequence, treatment options are sparse and especially focused on compensatory recovery. Moreover, with current standard pen-and-paper tasks, it is hard to quantify eye-movements in relation to head movements relevant for the interpretation of the performance of the patient whether or not the patient uses compensations. Moreover, patients cannot train independent at home with assessment and monitoring on remote (telerehabilitation). As a result, patients remain highly dependent of the spontaneous recovery of the neural system because of the small treatment effects currently seen in clinical practice. However, a huge amount of patients will have persistent VSN after rehabilitation leading to substantial loss of community participation with a high dependency on (in)formal care. This project aims to deliver a solution for the aforementioned problems by means of a virtual reality (VR) application. VR has the potential to provide a three-dimensional real-life environment increasing ecological validity of the assessment of neglect. The recent technical developments in consumer head mounted displays have made virtual reality a mature, reliable and affordable technology. This means for this application that patients will not only rely on equipment accessible at hospitals or rehabilitation centers, but they can even undergo treatment at home and at their own convenience, making telerehabilitation possible. The primary users are professional caregivers within the field of neurological rehabilitation such as neuropsychologists, physiotherapists and occupational therapists. Some patients, who can take responsibility for their own rehabilitation, can use the application independently within the care facility or at home (telerehabilitation).

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

4D scanner for Accelerating Advanced motion Analysis and Application 01/05/2020 - 30/04/2024

Abstract

The human body is a complex bio-mechanical system that exhibits many variations in geometry and movements. Advancements in 3D scanning and 3D modeling allow to construct precise and high-resolution models of the human body. Such a 3D model often contains more than 2GB of information such that recording, processing, transmission and data storage is labor and time intensive. In this project we acquire a 3D body scanner that captures the human body shape in high precision and with virtually no effort. The equipment will allow to register the human body with an accuracy of 1mm and up, at a frame rate of 10 3D scans per second. This so called 4D scanner (3D + time) constitutes the core of our 4D center of expertise, in which the research groups Product Development, MOVANT, Vision Lab, EVECO and Op3Mech together with Center for Health and Technology (CHaT) have joined forces in a complementary collaboration with the aim to use dynamical models of the human body for the development of new products with improved comfort and functionality, to design fundamentally new products with important applications in health care, and to improve our understanding of the evolutionary history of the human body. The combination of academic and industrial expertise of Kinesiology with Product Development and virtual modeling and simulations makes the center unique in the world. The consortium will tackle open design problems with applications for mass customization (3D printing) and wearables.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Preventive measures for high physical strain workers 01/10/2019 - 31/12/2023

Abstract

In this project we focus on preventive measures for dockers under physical load. We aim to achieve maximal support through recommendations for new products and training, in collaboration with physiotherapy.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Can stroke survivors re-learn normal walking? Understanding functional recovery and effects of exoskeleton-assisted training. 01/01/2019 - 09/02/2023

Abstract

Animal models suggest a limited time window of increased repair activity in the brain during the first weeks after damage, for example after a stroke. Within this time window, responsiveness to therapy is increased suggesting that this is the optimal time to start intensive rehabilitation. In great contrast, early rehabilitation is experienced by stroke patients as a time of being physical inactive. This lack of rehabilitation might explain rather disappointing mobility outcome, since a great amount of stroke survivors struggle to achieve independent community ambulation. The World Health Organisation expects an increase to 1.5 million new cases of stroke per year in 2025. If innovation in rehabilitation cannot be provided, the increasing incidence of stroke will inevitably lead to a growing chronic stroke population and a great burden for our society. A novel therapeutic strategy is a wearable exoskeleton. This device allows an earlier initiation of more intensive rehabilitation as it assists patients in walking even if they are severely affected. This technology has the potential to change acute stroke rehabilitation from an inactive into a motivating, active time as it allows early training of meaningful activity. However, due to its recent development this type of therapy is not yet investigated. We aim to fill this gap with the proposed project by investigating the effectiveness of this approach and provide evidence on an optimal time window for rehabilitation.

Researcher(s)

Research team(s)

Project website

Project type(s)

  • Research Project

Caretech: missing link between research, development and application of care techology 01/01/2019 - 31/12/2019

Abstract

At the university of Antwerp, innovative products/services are defined based on state of the art scientific knowledge and technology. The aim of this project is to develop a workflow to facilitate and accelerate transition from these innovations in the domain of health and health care, to actual enrollment.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Investigation on a critical time window for gait training in stroke rehabilitation. 01/07/2018 - 31/12/2019

Abstract

Animal models have shown that motor training is effective only if initiated early after stroke. This activity-induced recovery pattern temporally matches increased gene expression important for neuronal growth and plasticity in the post-stroke brain. It seems that the brain after damage induces a window of enhanced neuroplasticity during which greatest rehabilitation gains can be achieved. In human stroke care, earlier rehabilitation is associated with improved outcome, however it remains unknown whether a similar time window exists and how to take advantage in clinical practice. In the current research project, gait training will be initiated at a very early stage using a mobile, wearable exoskeleton allowing even acute patients to walk over-ground. A comparison of clinical outcome with a group receiving the same intervention at a later stage will allow to investigate on the factor timing. Moreover, an association between functional improvement and outcomes on neuro-motor recovery (neuro-imaging, Fugl-Meyer Assessment, biomechanical gait analysis) will be investigated. This will enlighten our understanding on when an intervention should be provided in order to affect the proportions of plastic re-organization. Further research on larger populations with a longer follow-up is needed to confirm preliminary results and finally implement these insights into therapeutic strategies and clinical practice. This approach can lead to substantial changes in how rehabilitative treatment is provided to neurological patients.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Robot-assisted gait training: a way to investigate a critical time window for stroke rehabilitation. 01/01/2018 - 31/12/2018

Abstract

Animal models suggest a limited time window of increased repair activity in the brain during the first weeks after damage, for example after a stroke. Within this time window, training responsiveness is increased suggesting that this is the optimal time to start intensive rehabilitation, e.g. gait training. Disappointingly, early stroke care is characterized by physical inactivity. This lack of intensive therapy probably explains rather disappointing mobility outcome, since half of stroke survivors leave rehabilitation facilities in a wheelchair. The World Health Organisation expects 1.5 million new cases of stroke per year in 2025. If innovation in stroke rehabilitation lacks, the increasing burden of stroke will inevitably lead to a growing disabled and dependent chronic stroke population. A novel therapeutic strategy are wearable exoskeletons. This device allows an earlier and more intensive rehabilitation approach as it assists in weightbearing and walking. This technology has the potential to change acute stroke rehabilitation from a passive into a motivating, active time as it allows early training in an enriched learning environment. However, due to its recent development this type of therapy is not yet investigated. We aim to fill this gap with the proposed project by delivering published evidence on feasibility and effectiveness.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Scapula Tilter: correction of scapular dyskinesis in patients with subacromial pain syndrome: the ffect of an orthopedic device. 01/09/2017 - 01/03/2019

Abstract

Subacromial pain syndrome is the most common cause of shoulder pain, accounting for 50% of all shoulder pain cases. Scapular dyskinesis has shown to be a key factor associated with many shoulder disorders, such as the subacromial pain syndrome and glenohumeral shoulder instability. Two Master students product development have created (and privately defended) a basic prototype of an orthopaedic device that is aimed at correcting the scapular position. The current project proposal is aimed at bringing this product to the market. First, the prototype will be further developed and adapted with confirmation of its efficacy, i.e. the apparatus can indeed correct scapular position. Second, this improved prototype will be used within a smallscale clinical study to demonstrate that the apparatus can reduce pain in patients with subacromial pain syndrome. At the same time, a trajectory of valorization will be developed to investigate the possibilities of bringing the product to the market.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Developing a user-friendly control system for a dexterous arm prosthesis for children with a bilateral transverse arm reduction 01/07/2017 - 31/12/2018

Abstract

The loss of an upper limb dramatically affects a person's daily activities. Recent developments in bionics and prostheses make it possible to compensate this loss of functionality with a bionic robotic hand. These bionic hands are commercially available and can enable a person to perform multiple types of hand movements. Controlling a bionic hand is in most cases based on the interpretation of two surface electromyography (EMG) signals. To control the multiple degrees of freedom (DOF) of a robotic hand with only two EMG signals, a sequential control strategy is used. This sequential control strategy requires a lot of training from the user. Currently different strategies are being developed to enable a user friendly and more efficient type of control. Most developments in the field of upper extremity prostheses are aimed at adults with a single arm reduction. Children with a double arm reduction are often unable to use the available prostheses and those that are available don't provide a solution for their specific needs. This project aims to integrate the most recent developments in prosthesis control and bionic robotics and make them available for children with a double arm reduction. The research is unique and novel because it aspires to develop and verify the use of non-invasive control strategies that enable children with a double or single arm reduction to control prostheses (with multiple DOF) outside of lab conditions. This project is primarily focused on one user. Larrissa (anonymous name) is an 8-year-old Belgium girl that misses both hands and feet. At the age of 1,5 she lost both hands and feet due to illness. Because her current prosthesis (and all other prosthesis) isn't suited for a bilateral amputee and offers little functionality she remains highly dependent on the help of others. The development was initiated in 2015 by Jos d'Haens (BAP physiotherapy, MOVANT) and was complemented with the master thesis of Erik Haring. This collaborative project between the department of Product Development and Rehabilitation sciences and physiotherapy at the Faculty of Medicine and Health Sciences resulted in a first prototype of a prosthetic socket, designed for Larissa. Jos d'Haens developed a miniaturised robotic hand that can perform three primary grip types. The compact dimensions make this bionic hand especially suitable for children. The prototype of the prosthetic socket (physical connection with the wearer) was the tangible output of the master thesis of Erik Haring. This project aims to provide the missing link, a user-friendly and intuitive control system that translates human input into desired movements of the robotic hand. We defined two clusters of research questions within the project 1. Human input: Which signals can be captured within the stump of the child? Are these signals suitable to serve as input for an intuitive control strategy for the prosthesis? 2. Control strategy: How can we transform these signals into a user-friendly control strategy? 2.1 Focus on movements: Developing a prosthesis control strategy that enables the child to perform at least the three primary grip patterns: power grip, precision grip and lateral grip. With these three grips users can perform 80% of the most common daily activities. 2.2 Focus on intuitive use and user-friendliness: With the actual feedback of the child we aim for a control system that can activate at least three grip patterns in a user-friendly and intuitive way. Apart from a functional fit, we will gather user feedback on the social acceptance of the movements and look of the prosthesis. We hope to apply and expand the knowledge and insights obtained from this study to other projects for young amputees. The methodology could serve as a basis for the development and design of similar intuitive and child friendly control strategies for prosthesis and assistive devices.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Accuracy of vibrotactile feedforward for posture and motion steering. 01/07/2016 - 31/12/2017

Abstract

The skin is the largest organ of the human body. It is a barrier between our body and the environment protecting us from dehydration, infection and injuries. The skin thus provides us with a sense of touch which has several functions such as 1) providing tactile information about our environment and 2) providing input to enable motor interactions with our direct environment e.g. grasping and manipulating objects. Due to the bimodal functionality of the tactile sense, the skin is particularly interesting for communicating motion related instructions through haptic cues directly engaging our motor learning systems. Opportunities for applications have been identified in sports and training, surgery, music, navigation, prosthesis, to develop assistive devices e.g. navigation aid for the visually impaired and for balance correction in vestibular disorders, to attain correct posture, gait, and for the purpose of rehabilitation e.g. after stroke. However, research is mainly confined to in-lab applications. In order to unlock the realm of opportunities for off-site applications, wearable haptic communication systems for posture and movement management should be developed and evaluated. Thereby vibrotactile signals directly deployed onto the skin are identified most promising for wearable systems. Frequency, intensity/amplitude, burst, and rhythm characteristics for optimal perception at various body locations are known in literature. We will investigate the accuracy of a basic system that steers actual posture and movement towards a reference condition through feedforward, that is, the subject receiving instructions on the actual or future desired reference condition. The independent variable in our study design is the feedforward time. The depended variable is a measure accuracy obtained by integrating the total immediate joint angle differences of desired and reference position over the time domain. An optimal feedforward time is explored and validated for movement instructions and for obstacle avoidance with vision and in blindfolded subjects.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Development and validation of an electrode positioning system for EIM measurement. 01/05/2016 - 30/06/2017

Abstract

Active muscle contractions are measured through elektro myography (EMG), where the electrical signals of nerves causing the muscle to contract are measured. The challenge is to measure inactive muscle contraction, aslo known as enhanced muscle tone, were no causing electrical signal is produced, however the muscle is in a contracted state. A well-known inconvenience is an enhanced muscle tone of the trapezius (stiff neck), in which physiotherapy is commonly applied to relieve the disease. In this project we aim to develop a method to measure muscle contraction independent from EMG signals, that can be applied to measure muscle tone and assess the effect of physiotherapy in patients who suffer an enhanced muscle tone.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Building an articulating 3D shape model for an improved seating comfort. 01/01/2015 - 31/12/2018

Abstract

There is a wide variety of body shapes. The goal of this project is to develop a statistical shape model of the population, based on 3D scans of the exterior of the body. This virtual model is fully adjustable, both in pose as well as in body shape. The characteristics are also adjustable. The model can be used by product developers to deliver better, more comfortable, semi-custom designs.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Development and validation of an ambulatory 3D motion capture based model to assess trunk performance and locomotion after stroke. 01/07/2014 - 31/12/2015

Abstract

In-depth biomechanical gait analyses have contributed to the understanding of movement patterns. However, movement analysis in home situations or even outdoors will augment its benefits. In this project we will develop a model linking 7 Xsens motion trackers to study trunk performance and locomotion. Furthermore, the reliability and validity of this model will be investigated by comparing the Xsens model with a Vicon optical camera system.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Multidisciplinary Motor Centre Antwerp - M²OCEAN. 22/07/2010 - 31/10/2016

Abstract

This project represents a formal research agreement between UA and on the other hand the Flemish Public Service. UA provides the Flemish Public Service research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Effect of aerobic exercise in improving physical fitness and daily functioning for patients with post-stroke hemiplegia. 01/01/2010 - 31/12/2011

Abstract

Many stroke survivors have residual physical impairments that may lead to a sedentary lifestyle and consequently a decline in cardiorespiratory fitness. Research is needed to determine the optimal protocol to train individuals with different levels of physical impairment and cardiac risk. It is useful to know the long-term effects of aerobic exercise training as well as the relationship between improvement in aerobic capacity and daily function.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Repetitive Strain Injuries in musicians: 1st phase: Evaluation of the kinematic/kinetic chains of the bow and support arm and cervicothoracic region in violin/viola players. 01/01/2009 - 31/12/2010

Abstract

This project about RSI in musicians has two goals: 1. to constitute a centre of expertise related to musculoskeletal complaints in musicians and 2. related, clinical and biomechanical (kinematic and kinetic) research about the muscle coordination, fatigue and arthrokinematics of the motoric performance control of music scores and the causes of RSI in musicians. In a first phase, this research furthers with the study on violists/violinists, research which has been started last year on violists of the Koninklijk Conservatorium Antwerpen.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

The effect of learning interprofessional collaboration in health care. 01/10/2008 - 30/09/2012

Abstract

Despite the increasing awareness and need for interprofessional collaboration in health care, only few studies demonstrate its effect. The main purpose of this study is to measure the effect of 'learning to collaborate interprofessionally' on the quality of care for residents of nursing homes. The study is divided into four major parts. The first part is a description of what interprofessional collaboration means and how this skill is taught in educational modules. These interprofessional education modules form the basis of the intervention in this study for this project. The second part is a systematic literature review conducted with the aim to obtain outcomes of interprofessional collaboration as an intervention for chronic geriatric care. Evidence is being searched that may or may not demonstrate the effect of 'learning to collaborate interprofessionally 'on the quality of care and how it is to be measured. In the third part, the aim is to get a description of the existing care (region Antwerp) for residents in nursing homes. The description of the existing care (usual care) is based on the experiences of professionals and residents using focus groups and depth interviews. The description will give us a better idea of how the care is being organized ' interprofessionally' and what the current problems are at work. In the fourth and final part of this project, a pilot for a cluster randomized controlled trial in primary care with one year follow-up is being performed. This experimental study attempts to quantify the effect of interprofessional collaboration as an intervention on the quality of care for residents in a nursing home. This study measures the possible influence of learning to collaborate interprofessionally for professional help providers, the nursing homes and their residents. With SWOT- analyses bottlenecks in interprofessional collaboration will be identified. In addition several outcomes are being registered since the implementation of the ' interprofessional collaboration-intervention'. On residents level a number of indicators are being monitored, for example the fall incidence, quality of life, etc. Also on nursing home level the experiences with 'learning to collaborate interprofessionally' are being registered for example work absenteeism, number of personnel, etc. With this doctoral study project, the aim is to measure the possible influence of learning to collaborate interprofessionally' on the quality of care, expressed in a limited number of outcome parameters and compared with the existing care. The hypothesis is that learning to collaborate interprofessionally can help to increase the quality of care in nursing homes.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Identification of clinical characteristics and biomarkers with a predictive value for conversion to dementia in patients with mild cognitive impairment. 01/01/2008 - 31/12/2009

Abstract

Mild cognitive impairment (MCI) is a heterogeneous clinically syndrome. Patients suffering from MCI have an increased risk to develop dementia. The aim of this research project is the identification of clinical characteristics (behavioural profiles) and biomarkers (APOE genotype and ¿-amyloïd1-42, total tau and tau phosphorylated at serine 181 in cerebrospinal fluid) with a predictive value for conversion to dementia in MCI patients.

Researcher(s)

Research team(s)

    Project type(s)

    • Research Project

    Investigation of the relationship between falling and equilibrium and posture in stroke patients. 01/10/2007 - 30/09/2011

    Abstract

    The development en validation of head and bodypositioning technology in strokepatients. The relationship between this posture and falling is investigated. In particular processes of equilibrium and neuropsychology are studied. Acquired knowledge is implemented in therapy and is subsequently evaluated.

    Researcher(s)

    Research team(s)

    Project type(s)

    • Research Project