Abstract
An accurate, precise knowledge of PDFs is a key input of analyses at hadron colliders, and simultaneously a crucial output of the measurements made. The issue of accurately determining the PDFs, and their errors, is thus critical to the physics goals of the LHC. However, the current PDFs are faced with challenges on multiple fronts. Experimentally, the greater data accuracy ensures increasing issues of dataset tensions and correlations, meanwhile as the number, complexity and precision of datasets grows so does the methodological challenge of understanding apparent inconsistencies, limiting the reduction in PDF errors. In addition, the reduction of experimental uncertainties necessitates, for the first time, the inclusion of theoretical uncertainties in the PDFs – a significant challenge. Such challenges will increase over the coming years and may limit future LHC physics analyses unless action is taken. The over-arching research objective of my proposal is tackle these issues head-on, in order to develop the next generation of world-leading MSHT PDFs - MSHT2025, of greater accuracy and precision than ever before. I will then study the impact of the PDFs across a variety of key experimental channels for LHC physics. At the same time I will also combine our world-leading collinear PDFs, with the cutting edge transverse momentum dependent PDF approach at Antwerp, representing the production of TMDPDFs in a simultaneous global fit for the first time, a major step forward.
Researcher(s)
Research team(s)
Project type(s)