Submitted preprints

  • M. Belrhazi and T. Mestdag, Geodesic extensions of mechanical systems with nonholonomic constraints,
    [arXiv]

Accepted for publication



Published papers

  • J. Grandes Umbert and T. Mestdag, The bundle of tensor densities and its covariant derivatives.
    Axioms 13 (2024), 667. [doi]

  • S. Hajdu and T. Mestdag, Homogeneous nonlinear splittings and Finsler submersions.
    Differential Geometry and its Applications 91 (2023), 102049. [arXiv] [doi]

  • E. García-Toraño Andrés and T. Mestdag, Conditions for reduction of polysymplectic and polycosymplectic structures.
    Journal of Physics A: Mathematical and Theoretical 56 (2023) 335202. [arXiv] [doi]

  • S. Capriotti, V. Díaz, E. García-Toraño Andrés and T. Mestdag, Cotangent bundle reduction and Routh reduction for polysymplectic manifolds. 
    Journal of Physics A: Mathematical and Theoretical 55 (2022) 415401. [arXiv] [doi]

  • W. Sarlet and T. Mestdag, Compatibility aspects of the method of phase synchronization for decoupling linear second-order differential equations.
    Journal of Geometric Mechanics 14 (2022), 91-104. [arXiv] [doi]
  • S. Hajdu and T. Mestdag, Nonlinear splittings on fibre bundles.
    Analysis and Mathematical Physics 12 (2022), article 14. [arXiv] [doi]
    ​​
  • S. Hajdu and T. Mestdag, Jacobi fields and conjugate points for a projective class of sprays. 
    Mediterranean Journal of Mathematics 18 (2021), article 73. [arXiv] [doi]
     
  • S. Hajdu and T. Mestdag, Conjugate points for systems of second-order ordinary differential equations.
    International Journal of Geometric Methods in Modern Physics 17 (2020), 2050012. [arXiv][doi]

  • W. Sarlet, T. Mestdag and G. Prince, A generalization of Szebehely's inverse problem of dynamics in dimension three.
    Reports on Mathematical Physics 73 (2017) 367-389. [arXiv][doi]

  • M. Farré Puiggalí and T. Mestdag, The inverse problem of the calculus of variations and the stabilization of controlled Lagrangian systems.
    SIAM Journal on Control and Optimization 54 (2016) 3297-3318. [arXiv][doi]
     
  • E. García-Toraño Andrés and T. Mestdag, Un-reduction of systems of second-order ordinary differential equations. 
    Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) (2016), 115, 20 pages. [arXiv][doi]
  • T. Mestdag, Finsler geodesics of Lagrangian systems through Routh reduction.
    Mediterranean Journal of Mathematics 13 (2016) 825-839. [arXiv][doi]

  • E. García-Toraño Andrés, T. Mestdag and H. Yoshimura, Implicit Lagrange-Routh Equations and Dirac Reduction.
    Journal of Geometry and Physics 104 (2016) 291-304. [arXiv][doi]

  • L. Búa, T. Mestdag and M. Salgado, Symmetry reduction, integrability and reconstruction in k-symplectic field theory.
    Journal of Geometric Mechanics 7 (2015) 395-429. [arXiv][doi]

  • E. García-Toraño Andrés, E. Guzmán, J.C. Marrero and T. Mestdag, Reduced dynamics and Lagrangian submanifolds of symplectic manifolds.
    Journal of Physics A: Mathematical and Theoretical 47 (2014) 225203. [arXiv][doi]

  • M. Crampin and T. Mestdag, A class of Finsler surfaces whose geodesics are circles.
    Publicationes Mathematicae (Debrecen) 84 (1-2) (2014), 3-16.  [arXiv][doi]

  • W. Sarlet, T. Mestdag and G. Prince, A generalization of Szebehely's inverse problem of dynamics.
    Reports on Mathematical Physics 72 (2013), 65-84. [arXiv][doi]

  • M. Crampin, T. Mestdag and D.J. Saunders, Hilbert forms for a Finsler metrizable projective class of sprays.
    Differential Geometry and its Applications 31 (2013) 63-79. [arXiv][doi]

  • M. Crampin, T. Mestdag and D.J. Saunders, The multiplier approach to the projective Finsler metrizability problem.
    Differential Geometry and its Applications 30 (2012), 604-621. [arXiv][doi]

  • W. Sarlet, G. Prince, T. Mestdag and O. Krupková, Time-dependent kinetic energy metrics for Lagrangians of electromagnetic type.
    Journal of Physics A: Mathematical and Theoretical 45 (2012) 085208 (13pp). [arXiv][doi]

  • B. Langerock, T. Mestdag and J. Vankerschaver, Routh reduction by stages.
    Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 7 (2011), 109, 31 pages.[arXiv][doi]

  • T. Mestdag, Book review on by R. Cushman, H. Duistermaat and J. Sniatycki.
    Communications in Mathematics 19 (2011) 85-88. [pdf] [Journal]

  • T. Mestdag and M. Crampin, Involutive distributions and dynamical systems of second-order type.
    Differential Geometry and its Applications 29 (2011) 747–757. [arXiv][doi]

  • T. Mestdag, W. Sarlet and M. Crampin, Second-order dynamical systems of Lagrangian type with dissipation.
    Differential Geometry and its Applications 29 (2011) S156-S163. [ResearchGate] [doi]

  • M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem.
    International Journal of Geometric Methods in Modern Physics 8 (2011) 897-923. [arXiv][doi]

  • M. Crampin and T. Mestdag, Reduction of invariant constrained systems using anholonomic frames.
    Journal of Geometric Mechanics 3 (2011) 23-40. [arXiv][doi]

  • T. Mestdag, W. Sarlet and M. Crampin, The inverse problem for Lagrangian systems with certain non-conservative forces.
    Differential Geometry and its Applications 29 (2011) 55-72. [arXiv][doi]

  • M. Crampin, T. Mestdag and W. Sarlet, On the generalized Helmholtz conditions for Lagrangian systems with dissipative forces.
    Zeitschrift für Angewandte Mathematik und Mechanik 90 (2010), 502-508. [arXiv][doi]

  • M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics.
    Dynamical Systems. An International Journal 25 (2010) 159 – 187. [arXiv][doi]

  • T. Mestdag and M. Crampin, On nonholonomic systems as restricted Euler-Lagrange systems.
    Balkan Journal of Geometry and its Applications 15 (2) (2010), 78-89. [ResearchGate] [journal]

  • O.E. Fernandez, T. Mestdag and A.M. Bloch, A generalization of Chaplygin's reducibility theorem.
    Regular and Chaotic Dynamics 14 (2009), 635-655. [arXiv][doi]

  • T. Mestdag, A.M. Bloch and O.E. Fernandez, Hamiltonization and geometric integration of nonholonomic mechanical systems,
    Proc. of the 8th National Congress on Theoretical and Applied Mechanics , Brussels (Belgium) (2009), 230-236. [arXiv][volume]

  • A.M. Bloch, O.E. Fernandez and T. Mestdag, Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations,
    Reports on Mathematical Physics 63 (2009) 225-249. [arXiv][doi]

  • M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry,
    Acta Applicandae Mathematicae 105 (2009), 241-266. [arXiv][doi]

  • M. Crampin and T. Mestdag, Second-order differential equations fields with symmetry,
    In: O. Krupkova et al (eds.), Variations, Geometry and Physics, Nova Science Publishers (2009), 261-275. [ResearchGate] [volume]

  • O.E Fernandez, A.M. Bloch and T. Mestdag, The Pontryagin maximum principle applied to nonholonomic mechanics,
    In: Proc 47th IEEE Conference On Decision and Control, Cancun (Mexico), Dec 9-11, 2008, 4306-4311. [ResearchGate] [doi]

  • T. Mestdag and M. Crampin, Invariant Lagrangians mechanical connections and the Lagrange-Poincare equations,
    Journal of Physics A: Mathematical and Theoretical 41 (2008), 344015 (20pp). [arXiv][doi]

  • M. Crampin and T. Mestdag, Relative equilibria of Lagrangian systems with symmetry,
    Journal of Geometry and Physics 58 (2008) 874-887. [arXiv][doi]

  • M. Crampin and T. Mestdag, The inverse problem for invariant Lagrangians on a Lie group,
    Journal of Lie Theory 18 (2008), 471-502. [arXiv][doi]

  • M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,
    Journal of Mathematical Physics 49 (2008), 032901 (28p). [arXiv][doi]

  • T. Mestdag and M. Crampin, A connection-theoretic approach to reduction of second-order dynamical systems with symmetry,
    Proceedings in Applied Mathematics and Mechanics 7 (2007), 1030605-1030606. [ResearchGate][doi]

  • T. Mestdag, Relative equilibria of invariant Lagrangian systems on a Lie group,
    In: F. Cantrijn et al (eds.), Differential geometric methods in mechanics and field theory (2007), 115-129. [ResearchGate]

  • T. Mestdag, A Lie algebroid approach to Lagrangian systems with symmetry,
    In: J. Bures et al (eds.), Differential Geometry and its Applications, Proc. Conf., Prague (Czech Republic) (2005), 523-535.[ResearchGate] [volume]

  • T. Mestdag, Lagrangian reduction by stages for non-holonomic systems in a Lie algebroid framework,
    Journal of Physics A: Mathematical and General 38, 10157-10179 (2005).  [ResearchGate][doi]

  • T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems,
    Journal of Physics A: Mathematical and General 38, 1097-1111 (2005).  [arXiv][doi]

  • T. Mestdag, Generalized connections on affine bundles,
    AIP Conference Proceedings 729 (2004), 232-239.   [ResearchGate][doi]

  • T. Mestdag and W. Sarlet, The Berwald-type linearization of generalized connections,
    Journal of Physics A: Mathematical and General 36, 8049-8069 (2003).   [arXiv][doi]

  • T. Mestdag, Generalised connections on affine Lie algebroids,
    Reports on Mathematical Physics 51, 297-305 (2003). [ResearchGate] [doi]

  • T. Mestdag, J. Szilasi and V. Tóth, On the geometry of generalized metrics,
    Publicationes Mathematicae (Debrecen) 62, 511-545 (2003).  [ResearchGate] [doi]

  • W. Sarlet, T. Mestdag and E. Martínez, Lagrangian equations on affine Lie algebroids,
    In: O. Kowalski et al (eds.), Differential Geometry and its Applications, Proc. Conf., Opava (Czech Republic) (2002), 461-472.  [ResearchGate] [volume]

  • T. Mestdag, W. Sarlet and E. Martínez, Note on generalized connections and affine bundles,
    Journal of Physics A: Mathematical and General 35, 9843-9856 (2002). [arXiv][doi]

  • E. Martínez, T. Mestdag and W. Sarlet, Lie algebroid structures and Lagrangian systems on affine bundles,
    Journal of Geometry and Physics 44, 70-95 (2002).  [arXiv][doi]

  • W. Sarlet, T. Mestdag and E. Martínez, Lie algebroid structures on a class of affine bundles,
    Journal of Mathematical Physics 43, 5654-5674 (2002).  [arXiv][doi]

  • T. Mestdag and V. Tóth, On the geometry of Randers manifolds,
    Reports on Mathematical Physics 50, 167-193 (2002). [ResearchGate] [doi]

  • T. Mestdag and W. Sarlet, The Berwald-type connection associated to time-dependent second-order differential equations,
    Houston Journal of Mathematics 27, 763-797 (2001).  [ResearchGate] [journal]

  • W. Sarlet and T. Mestdag, Aspects of time-dependent second-order differential equations: Berwald-type connections,
    In: L. Kozma et al (eds.), Steps in Differential Geometry, Proc. Coll. Diff. Geom., Debrecen (Hungary) (2001), 283-293. [ResearchGate] [volume]

  • T. Mestdag and W. Sarlet, The Berwald connection for time-dependent second-order differential equations and its applications in theoretical mechanics,
    In: Proc. of the 5th Nat. Congress on Theor. and Appl. Mechanics, Louvain-la-Neuve (Belgium), May 23-24, 2000, 71-74. [ResearchGate]

Phd Dissertation

  • T. Mestdag, Berwald-type connections in time-dependent mechanics and dynamics on affine Lie algebroids,
    Ghent University (2003).   [doi]