Research team

Expertise

- Statistical physics of equilibrium and non-equilibrium quantum systems, in particular the canonical and grand-canonical ensembles as well as the numerical implementation of all related quantities (free energy, chemical potential, entropy, distribution functions, correlation functions etc.). - Semiconductor physics and various theoretical investigations of quantum transport in nano-scaled devices (quantum wires, lowdimensional conductors and field-effect transistors, etc.). - Theory of quantum magnetism based on Heisenberg quantum spin systems and related models (xy-model, xxz-model, Ising model).

Spin-wave-like excitations in low-dimensional ferromagnets. 01/10/2016 - 30/09/2020

Abstract

Today, information in logic applications is mostly carried by the electric current of electrons and holes in semiconductors. There is however a rapidly growing interest in the transmission of information encoded by electron and atomic spins which, in principle, can be realized by the propagation of spin-waves or magnetization waves through low-dimensional ferromagnets. Genuine spin waves originate from deviations of individual, single spins with respect to the perfectly ordered ground state of a ferromagnet in which all spins are aligned parallel to each other. The waves that are propagating such deviations through the lattice of the ferromagnet are called spin waves and, as such, they can be excited only at very low temperatures. However, at room temperature one may excite similar waves, corresponding to the spatial variation of the macroscopic magnetization vector that locally deviates from the spontaneous magnetization. Although the basic quantum theory of ferromagnetism has been established already in the previous century, various fundamental problems are left unsolved or remain to be highly controversial, especially those concerning low-dimensional magnets. Rather than relying on semi-classical theories and simulation programs, the research of this PhD will focus on the fundamental physics of both the equilibrium properties and the spin dynamics of one- or two-dimensional ferromagnets, all to be studied in the framework of quantumstatistical and condensed matter physics

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

SILASOL - New Silicon Materials for Solar Applications. 01/01/2010 - 31/12/2013

Abstract

Silicon solar cells are the work horse of the photovoltaic energy conversion from sunlight into electricity.The SILASOL project focuses on new silicon-based materials for PV applications: by changing the shape of the silicon material (thinner wafers, nanowires, ...), or the synthesis method (CVD, mechanical cleavage, ...), the "new" Si material acquires specific properties (bandgap, crystallinity, ...) that can be used advantageously for PV applications. The technology development is in Imec (Leuven), the task of the UA is the experimental and computational characterization of these advanced silicon nanostructures.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project