Abstract
Malaria, caused by Plasmodium parasites, is one of the 'Big Three' infectious diseases. Each year more than 200 million cases are documented, including more than half a million deaths (>76% of the deceased are children under the age of five). P. vivax is the most widespread human-infective malaria parasite and severe cases are increasingly reported. Despite having a severe socio-economic impact on large parts of the world, the progress in battling P. vivax is slow. Problems are worsened due to low-efficacy vaccines, drug-resistant parasites and global disease (re-)emergence. This calls for active research into P. vivax biology. Invasion of a host reticulocyte (retic) by the merozoite (MRZ) is an essential event in the parasite's life cycle. Yet, our understanding of interactions at the MRZ-retic interface is limited. The PvTRAgs are MRZ surface antigens mediating retic binding. PvTRAg35.2 and PvTRAg38 are known to interact with basigin. Many aspects of these basigin binding PvTRAgs are yet to be investigated: i) the structural basis for basigin recognition is unknown, ii) the molecular determinants underlying the versatility displayed by PvTRAg-basigin interactions remain enigmatic, and iii) how these events relate to retic invasion is unclear. Given the knowledge gap in P. vivax biology and the importance of PvTRAgs in MRZ biology, tackling these issues is expected to generate many novel findings that may support P. vivax specific vaccine design efforts.
Researcher(s)
Research team(s)
Project type(s)