Indoor Localization with Low Earth Orbit Satellites. 01/11/2024 - 31/10/2026

Abstract

Positioning, Navigation and Timing (PNT) has become increasingly important in enabling many Location Based Services (LBS). Undoubtedly, the most used PNT systems are the Global Navigation Satellite Systems (GNSS), which provide worldwide coverage. Although GNSS has improved significantly over the past decades, multiple shortcomings are inherent to the design of the satellite system. The poor indoor reception and the susceptibility to jamming are a clear illustration of this. Therefore, a novel Low Earth Orbit (LEO) PNT system could provide a solution to these problems. Because these satellites are approximately 20 times closer to Earth, a significant signal strength difference can be observed. However, the topic of indoor localization with LEO satellites remains largely unexplored. To construct a new PNT constellation with good indoor accuracy and coverage the dynamic LEO satellite-to-indoor channel should be taken into account, together with optimizing carrier frequency, modulation, algorithms, and coding techniques within the many constraints. In this work, I quantify the LEO satellite-to-indoor channel characteristics. To achieve this, I will conduct numerous real-world measurements and quantify multipath and signal strength in a variety of indoor environments. This will be achieved by leveraging real LEO-PNT signals provided by ESA. Furthermore, a LEO satellite simulation will be constructed to analyze and optimize the PNT performance for indoor environments.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project