High-Quality Graphene Supports for Microspectroscopic Techniques (HYPERGRAPH)
Transmission electron microscopy (TEM) is a powerful technique to fully characterise the local structure of a broad range of materials. Due to many recent hardware advances, the quality of TEM measurements is nowadays ultimately determined by the sample supports. Surprisingly though, their importance has been majorly overlooked so far. The many benefits of graphene layers as a support have been well-recognised by the community, but commercial “graphene grids” show poor coverage and are dominated by unwanted residues and Cu nanoparticles from the preparation process. Consequently, commercial graphene grids currently correspond to merely 1% of the grids used. A solution to this problem is a novel protocol to produce high-quality graphene grids, developed within my ongoing ERC Consolidator grant “REALNANO”. A head-to-head comparison with the state-of-the-art demonstrates the superior quality of the HYPERGRAPH grids.
Moreover, our ongoing market survey with leading groups in both materials and life science indicates a very strong need for graphene grids that yield high and constant quality. Therefore, the overall aim of this PoC is to deliver our HYPERGRAPH supports to the TEM community, our beachhead market. To reach this goal, our methodology is based on further product development (reproducibility, cost-efficiency and shelf-life), exploration of other possible applications and business planning. In this manner, we aim to increase the Technology Readiness Level for HYPERGRAPH from 4 to 7 and the and Commercial Readiness Level from 4 to 6.
Feeling the “pain” related to the poor quality of TEM supports as an end user every day, I am convinced that valorisation of our technology can fill a crucial void in the TEM value chain. In this manner, HYPERGRAPH will enable characterisation and further development of new generations of nano- and biomaterials, with applications in fields as broad as catalysis, medicine, protein research, viral infections and energy.