Kennis Gebaseerde Neuraal Netwerk Compressie: Context Bewuste Model Abstracties 01/11/2021 - 31/10/2025

Abstract

In huidige IoT platformen worden complexe beslissingen op basis van sensor informatie genomen in gecentraliseerde datacenters. Elke sensor stuurt zijn informatie door naar een datacenter waarna een beslissing genomen wordt die doorgestuurd wordt naar actuatoren. Voor bepaalde applicaties kan die communicatie vertraging voor problemen zorgen. Om dit te voorkomen dienen beslissing dichter bij de edge genomen te worden. Dit is waar het onderzoek naar resource en context bewuste AI om gaat. Hier willen we slimme systemen op de edge bouwen die dynamisch aan passen aan andere omgevingen en resource beperkingen. Dit project zal zich focussen op het comprimeren van neurale netwerken. In dit werk willen we de huidige state-of-art uitbreiden door een kennis gebaseerde pruning methode toe te passen. Dit betekent we dat we de locatie van specifiek taak gerelateerde concepten bepalen, en deze gebruiken om het comprimeren te begeleiden. Op deze manier kunnen we de netwerken aanpassen voor omgevingsveranderingen en hardware beperkingen. Voor bepaalde taken zal het nuttig zijn om van bepaalde outputs de accuraatheid te doen afnemen. Dit met het oog op minder gebruik van hardware middelen. Een voorbeeld hiervan is dat we de detectie van bepaalde verkeersborden op autosnelwegen kunnen verminderen. We kunnen het netwerk comprimeren door de relevante kennis van die type verkeersborden te verwijderen. Dit werk focust op deze kennis, die gecodeerd is doorheen het netwerk, selectief te verwijderen.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject