Onderzoeksgroep

Expertise

Algebraïsche meetkunde met verbanden met andere gebieden. Meer specifiek: algebraïsche krommen, K3 oppervlakken, hyperkähler variëteiten, abeliaanse variëteiten, sheaves/stabiele objecten en hun moduliruimten. Ik ben ook geïnteresseerd in algebraïsche cycli, Shimura-variëteiten, modulaire vormen, differentiaalstrata en Teichmüller-dynamica.

Moduliruimten van translatieoppervlakken; 01/11/2024 - 31/10/2025

Abstract

In het huidige projectvoorstel, bestuderen we belangrijke aspecten van de globale meetkunde van moduliruimten van translatieoppervlakken. Translatieoppervlakken kunnen worden gezien als veelhoeken waarbij tegenoverstaande zijden geïdentificeerd worden. Het zijn zeer eenvoudige en fundamentele meetkundige objecten, maar de meetkunde van hun moduliruimten blijft grotendeels een mysterie. Deze moduliruimten parametriseren alle isomorfieklassen van translatieoppervlakken van een bepaald type. Ze werden aanvankelijk bestudeerd in de Teichmüller dynamica en pas in het laatste decennium zijn ze onder de aandacht van de algebraïsche meetkunde gebracht, waar ze veel aandacht hebben gekregen. Het voorstel is onderverdeeld in drie onderling verbonden werkpakketten (WP). Eerst bestuderen we lijnbundels, die de meetkunde van algebraïsche variëteiten grotendeels vastleggen. Concreet willen we hun Picard-groepen begrijpen (WP1). Verder bestuderen we hun birationele meetkunde, d.w.z. meetkunde op birationele equivalentie na (WP2). Concreet gaat het om de Kodaira dimensie en rationele modellen voor lage-genus gevallen. Tenslotte bestuderen we hun topologie, meer bepaald hun cohomologiegroepen (WP3). Een belangrijke input is een recente doorbraak (2018 en 2019) waarbij algebraïsche modulaire compactificaties van deze ruimten werden geconstrueerd. Dit opent de deur naar het beantwoorden van vragen die voorheen buiten bereik lagen. Elk werkpakket heeft tussenliggende en ambitieuzere doelen.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Nieuwe birationale invarianten en de meetkunde van moduliruimten. 01/02/2024 - 31/01/2029

Abstract

Moduliruimten zijn universele variëteiten, ze parametriseren alle variëteiten van een bepaalde soort. Wij streven naar een beter begrip van deze nieuwe birationale invarianten in de context van moduliruimten. Modulitheorie staat centraal in de moderne algebraïsche meetkunde, met toepassingen ook buiten de wiskunde. We onderzoeken belangrijke moduliruimten vanuit het perspectief van de birationele meetkunde. We besteden in het bijzonder aandacht aan recent geconstrueerde moduliruimten, zoals die van hyperkähler-variëteiten met een Lagrangiaanse vezeling en differentiaalstrata, waarvoor bijna niets bekend is over hun birationale complexiteit. Bepalen of een variëteit 'rationaal' (zo eenvoudig mogelijk) is, is een bekend moeilijk probleem. Aan de andere kant is er voor variëteiten van 'algemeen type' (zo ingewikkeld mogelijk) niet veel bekend over hoe ze van elkaar te onderscheiden. De meeste moduliruimten vallen in deze categorie. De afgelopen vijf jaar heeft een nieuwe reeks invarianten, bekend als "maten van irrationaliteit", bijzondere belangstelling gewekt. Zij zullen een cruciale rol spelen bij het begrijpen van de meetkunde van moduliruimten en hun complexiteit. We bestuderen deze vragen voor concrete recent geconstrueerde collecties van moduliruimten die diepgaande verbanden hebben met modulaire vormen en dynamica.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Nieuwe birationale invarianten en de meetkunde van moduliruimten 01/02/2024 - 31/10/2027

Abstract

Algebraïsche meetkunde is de studie van algebraïsche variëteiten. Moduliruimten zijn universele variëteiten, ze parametriseren alle variëteiten van een bepaalde soort. Modulitheorie staat centraal in de moderne algebraïsche meetkunde, met toepassingen ook buiten de wiskunde. We onderzoeken belangrijke moduliruimten vanuit het perspectief van de birationele meetkunde. We besteden in het bijzonder aandacht aan recent geconstrueerde moduliruimten, zoals die van hyperkähler-variëteiten met een Lagrangiaanse vezeling en differentiaalstrata, waarvoor bijna niets bekend is over hun birationale complexiteit. Bepalen of een variëteit 'rationaal' (zo eenvoudig mogelijk) is, is een bekend moeilijk probleem. Aan de andere kant is er voor variëteiten van 'algemeen type' (zo ingewikkeld mogelijk) niet veel bekend over hoe ze van elkaar te onderscheiden. De meeste moduliruimten vallen in deze categorie. De afgelopen vijf jaar heeft een nieuwe reeks invarianten, bekend als "maten van irrationaliteit", bijzondere belangstelling gewekt. Zij zullen een cruciale rol spelen bij het begrijpen van de meetkunde van moduliruimten en hun complexiteit. Wij streven naar een beter begrip van deze nieuwe birationale invarianten in de context van moduliruimten. We bestuderen deze vragen voor concrete recent geconstrueerde collecties van moduliruimten die diepgaande verbanden hebben met modulaire vormen en dynamica.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Algebraïsche cycli op hyperkähler-variëteiten. 01/01/2023 - 31/12/2026

Abstract

We bestuderen algebraïsche cycli op hyperkähler variëteiten. Het doel is de kennis over filtraties, tautologische cycli en tautologische identiteiten uit te breiden naar de niet-commutatieve omgeving en het Franchetta-conjectief te bestuderen op klein-dimensionale universele families van hyperkähler-variëteiten met eindige quotiëntsingulariteiten.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject