Onderzoeksgroep

Expertise

Duurzaamheidsanalyse op basis van levenscyclusanalyse (LCA) en techno-economische analyse (TEA), aangewend om vroegtijdig, in afwezigheid van pilootschaaldata, nieuwe materiaalcycli en dus ook recyclagetechnieken te kunnen ontwerpen en evalueren. Deze expertise wordt ook toegepast op nieuwe solventen, (bio)afbraak van plastics, enzymatische reacties en lokale ingrepen tegen luchtverontreiniging. Technologisch betreft de expertise vooral het opwerken en chemisch recycleren van organische (polymere) materialen en hun (biogebaseerde) bouwstenen.

Ontwerp voor circulariteit: labelen van polyolen met fluoroforen ter ondersteuning van polyurethaanrecycling. 01/11/2024 - 31/10/2026

Abstract

Polyurethaanschuim (PU) is overal om ons heen, in onze muren, bedden en auto's. Slechts 20% van dit PU wordt gerecycleerd, vooral tot inferieure producten. PU is een heteropolymeer van een polyol en een diisocyanaat, verbonden in een netwerk. Deze monomeren kunnen terug worden gesplitst met behulp van gekende chemische recyclagetechnieken, maar enkel proefinstallaties zijn operationeel. Om de complexiteit en moeilijkheid van zuivering te beperken, moeten de schuimen vóór de recyclage worden gesorteerd. Sortering op basis van het isocyanaat kan door het beperkte aantal isocyanaten dat industrieel wordt gebruikt. De gebruikte polyolen zijn echter zeer divers, wat sorteren beperkt. Om sorteren op basis van het polyol mogelijk te maken, stel ik voor de polyolen te voorzien van een spectroscopisch detecteerbare tag. De tags in dit onderzoek zijn fluoroforen. Dit onderzoek is een proof-of-concept dat fluorescerende tags aan polyolen kunnen worden bevestigd en gebruikt om dat polyol in PU-schuim te identificeren. Dit zal gebeuren door het synthetiseren van gefunctionaliseerde tags, het vergelijken van verschillende bevestigingsmethoden, gevolgd door het onderzoeken van de eigenschappen, stabiliteit en recycleerbaarheid van getagd schuim. Dit zal toepasselijke basis tag-structuren opleveren en een geoptimaliseerde screeningsmethode om nog geschikte tags te vinden. Na implementatie zal dit leiden tot een hogere kwaliteit van gerecycleerde polyolen en een grotere circulariteit van PU.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Recycling van polyurethaan: Moleculaire dynamica en simulatie van processtromen verenigen voor efficiënte scheiding en optimalisatie. 01/11/2024 - 31/10/2025

Abstract

Polyurethanen (PU) worden veel gebruikt in matrassen, bekleding, meubels, auto's, bouw en isolatie. Het zijn vaak thermohardende schuimen, gemaakt door isocyanaten (MDI, TDI of HDI) te laten reageren met polyolen. Hun thermohardende aard beperkt mechanische recycling, waardoor chemische recycling cruciaal is voor circulariteit. De resulterende aromatische moleculen, ureas, amines en polyolen van depolymerisatie hebben verschillende fysisch-chemische eigenschappen met invloed op hun scheiding. Dit doctoraat beoogt het gebruik van thermodynamische modellering om het gemak van het scheiden van gedepolymeriseerde PU-mengsels te voorspellen. De methoden omvatten modellen op basis van activiteitscoëfficiënten (NRTL, UNIFAC, HANSEN) vergezeld van computationele scheikundige methoden voor optimalisatie en het opvullen van hiaten in beschikbare data. De resultaten zullen worden gebruikt voor engineering software voor procesontwerp, optimalisatie van recycling voor recyclers en informatie voor circulair ontwerp voor PU-formulatoren en recyclers. De nadruk ligt vooral op het voorspellen van interacties tussen verschillende polyolen die in PU worden gebruikt, rekening houdend met monomeersamenstelling, vertakkingsgraad, moleculaire gewichtsverdeling en functionaliteit, om efficiënte scheidingen mogelijk te maken. Later worden ook andere bestanddelen in meer detail behandeld. Het doel is om recyclers en formulatoren inzichten te geven voor procesoptimalisatie en verbeterde circulariteit.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Een 400 MHz Nucleaire Magnetische Resonantie (NMR) spectrometer. 01/05/2024 - 30/04/2028

Abstract

Nucleaire Magnetische Resonantie (NMR) spectroscopie is een spectroscopische techniek die uniek inzicht verschaft in de chemische structuur en het dynamisch gedrag van moleculen. NMR is onmisbaar voor Medicinale en Organische chemie, voor onderzoek naar natuurproducten en voor alle onderzoeksdomeinen die aspecten van organische chemie gebruiken. Wetenschappelijke tijdschriften in deze domeinen vragen dat onderzoeksresultaten grondig gedocumenteerd worden met NMR spectra: indien onvoldoende gedocumenteerd, kan een manuscript niet gepubliceerd worden. Voor NMR spectroscopie bestaan geen breed toepasbare alternatieven. Er blijven momenteel slechts twee NMR spectrometers over op UAntwerpen: één in de Medicinale Chemie groep (UAMC) en één in de Organische Synthesegroep (ORSY). In beide onderzoeksgroepen hangen een groot aantal externe en internationale projecten volledig af van deze zeer intens gebruikte toestellen. Verlies of tijdelijke uitval van één toestel zou catastrofale gevolgen hebben voor het onderzoek. In 2024 zal de UAMC-spectrometer 15 jaar oud zijn en zijn verwachte levensduur bereikt hebben. Wij wensen daarom dit toestel prioritair te vervangen. 400 MHz spectrometers vormen de literatuurstandaard voor de meeste medicinale, organische en natuurproduct toepassingen en worden verondersteld dit de eerstkomende 20 jaar te blijven. Deze aanvraag past ook in een lange termijn strategie om in de toekomst NMR-afhankelijk onderzoek te kunnen uitvoeren aan UAntwerpen.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Valumat D4C project matrassen. 01/01/2024 - 31/12/2025

Abstract

Polyurethaanschuim (PU) is een belangrijk bestanddeel van matrassen. Tot op heden wordt slechts 20% van dit PU (mechanisch) gerecycled, voornamelijk tot inferieure producten. Polyurethaan is een heteropolymeer van een polyol en een diisocyanaat, die meestal netwerken vormen. De gebruikte polyolen kunnen zeer divers zijn, zelfs binnen één enkele matrasschuimformulering. Het is algemeen bekend dat deze monomeren kunnen worden gesplitst met behulp van verschillende chemische recyclingtechnieken, maar momenteel zijn er alleen proeffabrieken operationeel die matrassen als grondstof gebruiken. Om de complexiteit te beperken en de problemen van zuivering aan het einde van de procesketen te vermijden, moeten de schuimproducten gesorteerd worden voordat ze gerecycled worden. Sorteren op basis van isocyanaattype kan met behulp van nabij-infrarood identificatie, omdat er maar weinig verschillende isocyanaten industrieel gebruikt worden. De polyolen die in PU worden gebruikt zijn echter zeer divers, waardoor de sorteermogelijkheden beperkt zijn. Om sorteren op basis van polyol mogelijk te maken, stellen we voor om de polyolen te voorzien van een spectroscopisch detecteerbare tag. De tags die in dit onderzoek worden voorgesteld zijn fluoroforen. Dit onderzoek zal aantonen dat fluorescerende tags gebruikt kunnen worden om polyolen in PU-schuim te identificeren. Dit wordt gedaan door tags met polyolen te mengen, te analyseren hoe actief de tag is in het polyol, vervolgens schuim te maken van deze polyolen met tags en de detecteerbaarheid van de tags in een schuim te testen. Verder wordt er een diepgaand onderzoek uitgevoerd naar de eigenschappen van het getagde schuim en wordt de recyclebaarheid van schuim met getagde polyolen geëvalueerd. Dit levert toepasbare basistagstructuren op en een geoptimaliseerde screeningmethode om meer tags te vinden die geschikt zijn voor PU-schuim. Nadat er een werkend proof-of-concept is verkregen, zal de technologie gepatenteerd worden en zullen fabrikanten van PU-additieven benaderd worden om de technologie op te schalen en op de markt te brengen. Na implementatie kan het sorteren van schuim op basis van het polyol triviaal worden. Met deze sorteermogelijkheden kunnen betere recyclingstrategieën worden geïmplementeerd, zoals gerechtvaardigde beslissingen welk schuim mechanisch wordt gerecycled en welk chemisch. Dit zal leiden tot gerecyclede polyolen van hogere kwaliteit (virgin-grade) en een grotere circulariteit van het schuim.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

ENPROCI - De waarde van entropie als benadering voor energie en economische waarde met het oog op circulariteit van materialen. 01/12/2023 - 30/11/2025

Abstract

Circulaire economie-strategieën krijgen steeds meer aandacht binnen bedrijven om hun milieu-impact te verminderen en overheidsdoelstellingen te halen. In deze context onderzoeken en implementeren bedrijven in verschillende sectoren verschillende strategieën voor het hergebruiken, repareren, opknappen, hergebruiken, recyclen en terugwinnen van afgedankte producten, componenten, onderdelen of materialen. Om te beslissen welke strategie gekozen moet worden, zijn er case-specifieke levenscyclus- en technisch-economische beoordelingen nodig, die doorgaans veel gegevens, expertise en tijd vergen. Bovendien is er geen eenduidige kwantitatieve definitie van circulariteit die direct gebruikt kan worden om de circulariteit van productontwerpen of waardeketens te beoordelen, monitoren en optimaliseren. Daarom is er behoefte aan generieke tools/methoden die gebruikt kunnen worden om circulariteit te beoordelen op basis van generieke informatie die algemeen beschikbaar is. Om dit gebrek aan te pakken, presenteren we drie centrale hypothesen, waarin we stellen dat energieverbruik een adequate projectie van circulariteit biedt en dat entropie een valide parameter is om van processpecifieke beoordelingsmethoden over te stappen naar meer generieke, op toestand gebaseerde beoordelingsmethoden: Hypothese 1: De relatie tussen de opgeslagen energie van materialen en producten en hun koolstofvoetafdruk is lineair. Dit is al aangetoond in verschillende studies. Hypothese 2: De relatie tussen de opgeslagen energie van materialen en hun economische waarde (als grondstoffen) is lineair. Dit is al aangetoond door het werk van Tim Gutowski en anderen. Hypothese 3: De relatie tussen de verdunning van hulpbronnen (wederzijdse concentratie in afzettingen) en de opgeslagen energie van materialen is lineair. Verdunning kan hier direct worden geïnterpreteerd als entropie, zie de beschrijving hierboven. Dit is al aangetoond voor metalen, terwijl we in voorbereidend werk een soortgelijke relatie hebben berekend voor verpakkingsafval na consumptie. Bewijs dat deze drie hypothesen ondersteunt, zou voor het eerst een direct en kwantitatief verband leggen tussen circulariteit van materialen en klimaatverandering. Op die manier kan entropie worden gebruikt als een indicatie voor het energieverbruik tijdens de levenscyclus van een materiaal, en op zijn beurt voor de koolstofvoetafdruk. Verder zouden we basisbewijs leveren dat bedrijven en beleidsmakers kan overtuigen aan de hand van eenvoudige casestudies. In dit project zullen we hypotheses 2 en 3 verder aantonen door ons te richten op de waarde versus entropie van afvalmaterialen en door te kijken naar biogrondstoffen. Met behulp van dit raamwerk kunnen afvalsorteer- en (bio)raffinageprocessen beoordeeld worden op de prestaties van individuele eenheidsoperaties in plaats van alleen op de eindresultaten van een complete fabrieksconfiguratie. De reikwijdte van dit project wordt beperkt tot verschillende fossiele polymeren en biogebaseerde polymeren om de haalbaarheid en complementariteit met de expertise van de groep te garanderen. De verwachte resultaten zullen het gebruik en de valorisatie van de nieuwe methodologie voor de beoordeling van circulariteit versnellen en deze toegankelijker maken voor het belangrijkste doelpubliek, d.w.z. product- en procesontwerpers. Op deze manier zal de basis worden gelegd voor een tool voor circulariteitskwantificering en -optimalisering op basis van generieke thermodynamische principes.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Inspectie en meting van complexe 3D geprinte objecten. 01/06/2023 - 31/05/2025

Abstract

3D-printen, en additive manufacturing in het bijzonder, is de afgelopen jaren getransformeerd van een prototyping- naar een volwaardige productietechnologie. De drijvende kracht achter deze transformatie was de behoefte aan op maat gemaakte, lichtgewicht onderdelen en een efficiënter gebruik van grondstoffen om afval te verminderen. De huidige trend gaat in de richting van steeds complexere onderdelen, bestaande uit meerdere materialen om hun fysieke en/of mechanische eigenschappen te verbeteren. De complexiteit van de onderdelen versterkt de nood aan gespecialiseerde inspectie- en kwaliteitscontrolemethoden. In dit project zal de complementariteit tussen verschillende beeldvormingstechnologieën zoals 3D röntgenbeeldvorming, thermische beeldvorming en terahertz beeldvorming worden onderzocht binnen het toepassingsgebied van 3D inspectie en metrologie van 3D geprinte onderdelen.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Chemische recyclage van stikstofhoudende polymeren (CHRONICLE). 01/03/2023 - 28/02/2027

Abstract

Ontwikkelen van een nieuwe chemische recyclingbenadering voor de verwerking van harde polyurethaan (PU) en polyisocyanuraat (PIR) afgedankte materialen. Door gebruik te maken van selectieve depolymerisatie zullen we deze afvalstoffen omzetten in waardevolle bouwstenen voor de productie van duurzamere materialen en op die manier een hoge koolstofcirculariteit garanderen. Om de duurzaamheid van de nieuwe technologische route te garanderen, zal CHRONICLE ook een sterk waardeketenbeheer hebben, ondersteund door techno-economische en levenscyclusanalyses. CHRONICLE zal afvalaanbieders en recycleerders verbinden met downstream chemische bedrijven en PU-producenten, wat resulteert in een geoptimaliseerde waardeketen met verbeterde circulariteit, nieuwe economische kansen en nieuwe synergetische partnerschappen. CHRONICE maakt deel uit van het Moonshot-programma, waarin VITO, KUL en UA hun krachten bundelen. (2023-2027).

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Chemisch knippen van rubbers: een oplossing voor het opkomende bandenafval probleem. 01/11/2022 - 31/10/2026

Abstract

Rubbers, hoewel ze in onze maatschappij veel gebruikt worden, zijn over het algemeen moeilijk te recycleren. De meeste commerciële recyclagetechnieken zijn beperkt tot granulatie, hoewel rubbergranulaten niet veel waarde hebben, en geassocieerd zijn met diverse milieuproblemen. Devulkanisatie en pyrolyse van rubbers zijn duur, en leiden tot een reeks van moeilijk definieerbare producten. Verouderingsstudies op banden daarentegen, hebben al lang geleden onbewust geleid tot kennis over een andere depolymerisatie methode, namelijk ozonolyse. Voor het eerst wordt het potentieel als een recyclagetechniek geïdentificeerd, in plaats van als een probleem. Ozonolyse zal gebruikt worden als vernieuwende, duurzame aanpak voor de vorming van eind-gefunctionaliseerde monomeren uit rubberafval. In dit project worden de verschillende uitdagingen rond massatransfer, karakterisatie, opwerking en opschaling overwonnen om aan industriële partners demonstratiestalen van gerecycleerde harsen en carbon black te leveren, door de bouw van een functionerende reactor op laboschaal. De harsen zullen worden gekarakteriseerd en gebruikt in demo-applicaties van zowel condensatiepolymeren als lijmen. Uitgaande van moeilijk recycleerbaar (soms bio-gebaseerd) afval, zal deze groene en relatief goedkope oxidatiemethode producten opleveren met interessante, nieuwe eigenschappen, en tegelijkertijd fossiele bronmaterialen vervangen.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Groene en duurzame synthese van mesoporeuze metaal-organische netwerken om waterstofbrug-donerende (HBD) organokatalysatoren nieuw leven in te blazen als biomimetisch platform. 01/11/2022 - 31/10/2025

Abstract

De meeste biochemische reacties hebben hoge activatie-energieën, gaan niet door met de nodige snelheid zonder behulp van enzymen. Waterstofbrugdonoren (HBD) fungeren als Lewis-zuur-katalysatoren en spelen een sleutelrol in vele enzymatische reacties, zowel voor oriëntatie van substraten, als voor het verlagen van reactie-energiebarrières. Hun tendens tot zelf-aggregatie vermindert hun oplosbaarheid en reactiviteit. Supramoleculaire chemie (MOFs) biedt een gunstig biomimetisch platform om organokatalysatoren te immobilizeren, welgedefinieerde reactieomgevingen en hoge porositeit. Eerdere pogingen waren onsuccesvol door beperkte substraat-scope en poriegrootte, onstabiliteit en complexe synthese. Onze nieuwe methode heeft drie doelen: 1) MOFs ontwerpen met grote poriën om gewenste porositeit en stabiliteit vast te leggen; 2) verlengen van linkers d.m.v. directe arylatiereacties, om synthetische complexiteit te verlagen en 3) verschillende alternatieven voorstellen om (combinaties van, en chirale) HBD katalysatoren te koppelen aan het MOF-netwerk. Deze materialen kunnen dienen als templates voor metaal/koolstof hybride stoffen met ongeziene porositeit. Alle gesynthetiseerde katalysatoren zullen worden getest. Deze modulaire en geconcerteerde aanpak voor heterogene (organo)katalysatoren zal een richting in het onderzoek heropstarten die de spectaculaire voordelen van het aanpakken van de hoofdreden voor het falen van de huidige HBD katalysatoren aantoont.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

GOPRESUSE - Naar generieke optimalisaties en prospectieve evaluaties voor het ontwerp van duurzame disruptieve procestechnologieën en duurzaam grondstoffenbeheer door het verbinden van statistische entropie, economische en milieuaspecten. 01/10/2022 - 30/09/2026

Abstract

De continu stijgende vraag naar hulpbronnen zorgt ervoor dat we onze planetaire grenzen overschrijden. Methoden als levenscyclusanalyse en techno-economische analyse zijn voorgesteld om duurzame systemen en processen te ontwikkelen. Deze traditionele methoden stellen ons echter niet in staat de duurzaamheid te voorspellen van disruptieve technologieën, aangezien deze gebaseerd zijn op zeer specifieke informatie die pas beschikbaar is bij een hogere technologische maturiteit (TRL) en een specifiek achtergrondsysteem. Daarom zijn er methoden nodig die enkel berusten op generieke informatie beschikbaar op elk TRL. Dit is precies wat ik wil bereiken in dit onderzoeksproject: Ik zal een innovatief design-for-sustainability paradigma creëren dat voorspellingen en optimalisaties kan doen voor de ontwikkeling van nieuwe processen en systemen naar economische en ecologische duurzaamheid op elk TRL. Daarom zal ik statistische entropie koppelen aan generieke energieberekeningen en generieke kapitaalkostenschattingen en zal ik multi-objectieve optimalisatieproblemen en oplossingsstrategieën definiëren. Ter validatie worden er drie toepassingen bestudeerd: (i) het ontwerp van lignocellulose bioraffinaderijen, (ii) polyolefine plastic afvalbeheer en (iii) fosforbeheer. Dit grensverleggend onderzoek zal wegen openen naar mijn toekomstige carrière als onafhankelijk hoofdonderzoeker werkende op procesgebaseerde modellering, controle en optimalisatie voor de ontwikkeling van duurzame systemen.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Volledige recyclage van afval van harde polyurethaanschuimen ter vervanging van fossiele PU grondstoffen 01/08/2022 - 31/07/2026

Abstract

Dit Baekeland-project zal in een nauwe samenwerking tussen SurePUre (Triple Helix BV) en de Universiteit Antwerpen leiden tot een nieuwe methode om harde polyurethaanschuimen te recycleren, in de vorm van een gedeeld doctoraatstraject. De huidige processen recupereren slechts een eenfasig mengsel, wat laagwaardige polyolen zijn met een beperkte bruikbaarheid. Er is echter een sterke behoefte om de huidige petrochemische PU-grondstof te vervangen. Dit project wil de belangrijkste PU-bestanddelen afzonderlijk recycleren en zo meer waarde creëren voor een circulaire economie.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Naar een universele predictor voor polymeerREcycleerbaarheid via het verbinden van Statistische entropie, Energiebalansen en Polymerisatiereactietechniek (RESTEP) 01/01/2022 - 31/12/2025

Abstract

Polymeren maken een integraal deel uit van ons leven, maar zijn moeilijk recycleerbaar. Desondanks is de diversiteit van polymeermaterialen nog steeds toenemend, ondanks maatschappelijke en wetgevende druk om hun complexiteit te verminderen. Levenscyclusanalyse en technisch-economische inschattingen starting ongelukkig van enthalpische overwegingen (materiaal en energiebalansen) ivp entropische (productcomplexiteit en -structuur). Dit leidt to de paradox dat we niet weten welke afvalmateriaal van voldoende hoge kwaliteit is om te recycleren rekening houdend met (toekomstige) marktcondities en dat we niet exact weten hoe polymeren te produceren om de waarde van post-consument recyclaat te optimaliseren. Bovendien wordt het (macro)moleculaire niveau welke macroscopische eigenschappen bepaalt niet bekeken, alhoewel het geweten is dat industriële polymeersynthese gekarakteriseerd is door significante inter- and intramoleculaire variaties. Een connectie van polymerisatiereactietechniek (PRE; UGent) en generieke duurzaamheidinschattingsmethoden is bijna volledig afwezig, maar nuttig en rechtvaardigt de context. We mikken op een generieke methode voor het voorspellen en optimaliseren van de recycleerbaarheid van economische goederen startend op moleculair niveau. Op de lange termijn kan de methode bepalen of een variatie voor chemische modificatie niet enkel nuttig is van applicatiestandpunt maar ook voor recycleerbaarheid.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

NCO-Cycle - kringloop sluiten voor gebruik van isocyanaten in polyurethaan. 01/10/2021 - 30/09/2025

Abstract

Polyurethaan (PUR) als thermohardend polymeer is lastig recycleerbaar - twee courante technieken zijn mechanische recyclage (cutting & rebonding) en in beperkte mate chemische recyclage, waarbij via hydrolyse, alcoholyse of glycolyse het gebruikte polyol wordt gerecupereerd, maar de isocyanaatcomponent reageert tot amines, die bij de huidige stand van de techniek meestal als restfractie worden verbrand. In dit project wordt een alternatieve route onderzocht om uit de amidefractie opnieuw isocyanaten te genereren, zonder gebruik van toxische of milieugevaarlijke reagentia, om op die manier op duurzame wijze de materiaalkring rond het gebruik van PUR te sluiten

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

InSusChem - Consortium voor Geïntegreerde Duurzame Chemie Antwerpen. 15/10/2020 - 31/12/2026

Abstract

Dit IOF consortium verbindt chemisten, ingenieurs, economisten en milieu-wetenschappers in een geïntegreerd team om maximale impact te genereren in de duurzame sleuteltechnologieën, materialen en reactoren, die een cruciale rol spelen in een duurzame chemische industrie en in de economische transitie naar een circulaire, grondstofefficiënte en koolstofneutrale economie (deel van de 2030 en 2050 doelen waarin Europa een leidende rol wil spelen). Innovatieve materialen, hernieuwbare chemische grondstoffen, nieuwe/alternatieve reactoren, technologieën en productie methoden zijn essentiële en centrale elementen om dit doel te bereiken. Door hun onderlinge verstrengeling is een multidisciplinaire, gecoördineerde inspanning als team cruciaal om succesvol te kunnen zijn. Bovendien is vroegtijdige voorspelling en identificatie van sterktes, opportuniteiten, zwakten en bedreigingen in levenscyclusanalyse, techno-economische analyse en duurzaamheidsbeoordeling een objectieve en noodzakelijke sleutel om duurzaamheid in te bouwen tijdens de design fase en om effectieve kennis-gedreven beslissingen te nemen en focus te houden op de grootste bijdragen aan duurzaamheid. Het consortium focust op duurzame chemische productie door efficiënt en alternatief energiegebruik, gekoppeld aan circulariteit, nieuwe chemische reactiepaden, technologieën, reactoren en materialen, die toelaten om alternatieve grondstoffen en energie te gebruiken. De kern van technologische expertise wordt ondersteund door expertise in simulaties, techno-economische en milieu impact beoordelingen en onzekerheidsidentificatie om de technologische ontwikkeling te versnellen via kennis gedreven design en vroeg stadige identificatie van sleutel onderzoek nodig voor een versnelde groei en maximale impact op duurzaamheid. Om deze doelen te bereiken, zijn de consortiumleden gegroepeerd over 4 samenhangende valorisatie programma's gefocust op sleutelelementen die de performantie bepalen en de chemische industrie en technologie hun meerwaarde geven en verder doen groeien: 1) hernieuwbare grondstoffen, 2) duurzame materialen en materialen voor duurzame processen, 3) duurzame processen die efficiënt gebruik maken van alternatieve hernieuwbare energie en/of circulaire chemische bouwstenen gebruiken; 4) innovatieve reactoren voor duurzame processen. Daarenboven zijn transversale sleutelexpertises geïntegreerd, die essentiële ondersteuning bieden en data gebaseerde beslissingen mogelijk maken in de 4 valorisatie programma's door simulaties, techno-economische en milieu-impact beoordelingen en onzekerheidsanalyses.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

ADV_BIO. 01/10/2020 - 30/09/2025

Abstract

Het ADV_BIO project beoogt de ontwikkeling, via innovatieve en competitieve benaderingen, van geavanceerde (bio)brandstoffen uit hernieuwbare non-food bronnen die geen afval genereren. Dit project richt zich op de ontwikkeling van innovatieve en competitieve technologische productieschema's om België te positioneren als een strategische en gedifferentieerde partner en speler voor de eco-efficiënte productie van tweede en derde generatie alternatieve geavanceerde (bio)brandstoffen. Biobrandstoffen uit hernieuwbare bronnen voor niet-voedingsdoeleinden die geen indirecte veranderingen in landgebruik veroorzaken, worden beoogd zoals vastgelegd in de Richtlijn Hernieuwbare Energie 2018/2001 die in december 2018 werd aangenomen door het Europees Parlement en de Raad van Ministers van de Europese Unie. Het project ADV_BIO heeft daarom tot doel het wegnemen van technologische belemmeringen in verband met deze alternatieve brandstoffen te bestuderen door een beslissingsrooster aan te bieden via innovatieve onderzoeksacties, gedifferentieerd, aangepast aan de vereisten van het nationale grondgebied. De nieuwe producten, of zij nu zijn aangepast aan het weg- of luchtvervoer, zullen een chemische samenstelling hebben die hen in staat stelt te voldoen aan de specificaties van de brandstofindustrie. Het project richt zich op biomassa als grondstof voor de productie van alternatieve brandstoffen (biobrandstoffen en synthetische brandstoffen), zoals gedefinieerd in Richtlijn 2014/94/EU van het Europees Parlement en de Raad van 22/10/2014 betreffende de inzet van een infrastructuur voor alternatieve brandstoffen, paragrafen 4 en 6, en op de mededeling van de Commissie van 24/01/2013 "Schone energie en vervoer: de Europese strategie voor strategie voor alternatieve brandstoffen". Om dit ADV_BIO-project uit te voeren, zal het project zich toespitsen op niet-voedingsbiomassa's, namelijk microalgen en lignocellulosehoudend materiaal, die een laag risico hebben op indirecte veranderingen in landgebruik zoals voorzien in de Richtlijn (EU) 2018/2001 van het Europees Parlement en de Raad van 11 december 2018 ter bevordering van het gebruik van energie uit hernieuwbare bronnen en de herschikking ervan van 13 maart 2019 waarin de specificatie van duurzaamheidscriteria voor biobrandstoffen wordt beschreven. Om dit onderzoek uit te voeren, zijn vier universiteiten betrokken: Uliege, UCLouvain, UGent en UAntwerpen via 6 verschillende onderzoeksgroepen die aspecten van fysiologie, genetische modificatie, chemische ingenieurstechnieken, energie- en milieueconomie en kwantitatieve duurzaamheidsbeoordelingen bestrijken

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Driefasige recyclage door afzondering van verschillende polyolen uit complexe zachte PU-schuimen. 01/05/2023 - 30/04/2024

Abstract

Dit project beoogt de recycling van postindustrieel polyurethaanafval (PU), d.w.z. productieafval, snijverlies en/of PU van slechte kwaliteit dat meer dan één polyol bevat, tot een driefasensysteem, dat wij onlangs voor het eerst in ons laboratorium hebben waargenomen. Met deze technologie kunnen verschillende polyolen afzonderlijk worden teruggewonnen met een hogere zuiverheid dan bij de huidige stand van de chemische recyclage. Momenteel wordt dit postindustriële afval ofwel verbrand ofwel, in het beste geval, mechanisch gerecycleerd tot laagwaardige producten. Met onze strategie kunnen alle polyolen volledig worden teruggewonnen en hergebruikt in de schuimproductie. Op middellange termijn moet dit leiden tot kleine modulaire polyolterugwinningseenheden. Bovendien zal het project amines produceren in een éénstapsrecyclageproces en deze scheiden in een minder energie-intensief proces. Een belangrijke operationele doelstelling is de toepassing van dit concept op verschillende soorten PU-afval die meer dan één polyol bevatten en afkomstig zijn van verschillende productie-eenheden.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Recyclage van Latexschuim en Rubber als Groene Grondstof door Depolymerisatie en Functionalizatie via Ozonolyse (RecycLAT) 01/12/2021 - 30/11/2024

Abstract

Het project gaat over chemische recyclage van gevulcaniseerd latexschuim (i.e. schuimrubber) via een nieuwe methode om kleinere telechelische oligomeren te maken, en kijkt naar mogelijke reactiecondities en karakterisatiemethoden van de produkten

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

ChemReRub FASE 2. 12/08/2021 - 31/03/2023

Abstract

Chemrerub is een project dat beoogt om natuurlijk en synthetisch rubber, een weerbarstig afvalmateriaal van deels natuurlijk oorsprong, te recycleren tot waardevolle chemische feedstock voor gebruik in diverse toepassingen, om van de klassieke strategie van energierecuperatie door verbranding weg te bewegen.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Volledige chemische recyclage van polyurethaanafval in twee stappen. 01/05/2021 - 30/04/2022

Abstract

Dit project beoogt de volledige recyclage van polyurethaanafval, door een tweestapsproces waarin zowel de polyolen als de isocyanaten volledig herwonnen worden. Ten opzichte van bestaande technologie en gelijklopend onderzoek beoogt dit project de productie van isocyanaatfracties uit afvalfracties via een kortere route, zonder voorafgaand amines te produceren. Een belangrijke operationele doelstelling is het ontwikkelen van een nieuwe reactiesetup op laboschaal, en daarnaast het testen van effectieve afvalstalen van polyurethaan.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Zinc-co-Sink, dual pathway for safe rubber granulate recycling. 01/01/2021 - 01/05/2023

Abstract

Dit project wordt uitgevoerd door Universiteit Antwerpen en VITO, en ondersteund door het Opzoekingscentrum voor de Wegenbouw (OCW). Twee mogelijke oplossingen worden hierbij onderzocht om de vrijgave van zink uit rubbergranulaat te verhinderen; enerzijds door het coaten van de rubberkorrels (UAntwerpen) en anderzijds door de vrijkomende schadelijke bestanddelen op te vangen in een sorbent voor ze in de omgeving terecht komen (VITO). Eventuele oplossingen kunnen nadien (fase II) echter verder ontwikkeld worden en ook dienen voor diverse toepassingen van rubbergranulaat waar de milieuproblematiek een rol speelt. In het vervolgonderzoek zal eveneens aandacht besteed worden aan de recycleerbaarheid en duurzaamheid van beide oplossingen (invloed van veroudering en/of uitzonderlijke weersomstandigheden).

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Francqui Leerstoel 2020-2021 Prof. Jo Dewulf. 01/10/2020 - 30/09/2021

Abstract

De lessenreeks is opgebouwd rond drie belangrijke productie- en consumptieketens die in grote mate de voetafdruk van de moderne consument bepalen: energie, materialen en voeding. Voor deze drie ketens wordt telkens de internationale context en evolutie geschetst. Kritische elementen in de ketens worden bekeken waarbij productie, consumptie en afdanking van naderbij worden bekeken. De lessen worden geïllustreerd met cases uit eigen onderzoek.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

ChemReRub Phase 1. 29/09/2020 - 31/03/2021

Abstract

Dit project biedt een innovatieve, nieuwe en verschillende manier om post-consumer rubber te recycleren, niet als granulaat, maar als feedstock voor de productie van recycleerbare polmeren. Twee belangrijke bijdragen in Vlaanderen zijn afvalbanden en latex matrassen. De bedoeling van dit project is om de recyclagetechnologie van een initieel concept naar een proces dat kan worden gedemonstreerd op laboschaal met polydieen rubbers die gerecycleerd worden tot startmateriaal voor condensatiepolymeren, bij voorkeur met vermalen rubber banden als grondstof.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Recyclage van Latexschuim en Rubber als Groene Grondstof door Depolymerisatie en Functionalizatie via Ozonolyse (RecycLAT). 01/07/2020 - 31/12/2021

Abstract

Natuurlijk rubber is een biopolymeer met vele toepassingen, maar de recyclage en het hergebruik ervan is een bijzonder netelig probleem. Vooralsnog is de voornaamste verwerkingswijze van rubber verbranden of storten. Devulcanizatie, wat nodig is om het opnieuw in te zetten als elastomeer, is bijzonder moeilijk. Gebruik van rubber als groene grondstof, na een nuttig leven als elastomeer, is tot nog toe nauwelijks geëxploreerd. Ozonolyse is een veelzijdige techniek die toepassing vindt in het knippen van C=C dubbele bindingen in een polymeer en het creëren van eindstandige functionaliteiten waar er in de keten geknipt is. Op die manier moet het mogelijk zijn om natuurlijk rubber te depolymeriseren om te gebruiken als grondstof voor andere condensatiepolymeren die makkelijker te recycleren zijn dan het oorspronkelijk rubber zelf. Dat is dan ook het drieledig doel van dit project – 1. depolymerizatie van rubber – latexschuim en vermalen rubberbanden – tot oligomere materialen met eindstandige functionalisatie, en het onderzoeken van de procesomstandigheden van ozonolyse op de eigenschappen en ketenlengten van deze materialen. 2. Het onderzoeken van het lot, gedurende dit proces, van de crosslinks die in natuurlijk latex worden aangebracht door vulcanizatie. 3. Het voorbeeld van rubber gebruiken als case in de ontwikkeling van LCA en TEA tools, en real-time feedback voorzien vanuit deze studies naar dit project ivm het gebruik van chemicaliën, solventen en de algemene technisch-economische haalbaarheid van het proces gedurende de ontwikkeling ervan.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

SILEXOIL (Silica adsorptive in combinatie met vloeistof Extractie voor het verwijderen van oxygenates/nitrogenates uit polyolefine pyrolyse olie/oil). 01/01/2020 - 31/12/2021

Abstract

Op basis van recent ontwikkelde "fysische scheidingstechnieken" wordt een proces ontwikkeld dat toelaat om het gehalte aan heteroatoom bevattende moleculen in pyrolyse olie te reduceren en geschikt te maken voor valorisatie. De methode kan een substituut zijn voor hydrotreatment.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Multi-inzetbaar x-straal poederdiffractieplatform voor materiaalwetenschappen. 01/01/2020 - 31/12/2021

Abstract

Dit projectvoorstel behelst veelzijdige instrumentatie voor het bepalen van kristalliniteit, eenheidscelgrootte en structuur van organische, metaal-organische en anorganische materialen. Verschillende groepen aan de UAntwerpen hebben een dringende nood aan snelle, betrouwbare x-straaldiffractiedata, bij lage hoeken om grote eenheidscellen te bepalen, en bij voorkeur in 2D om de homogeniteit van de stalen te bewaken. Het voorgestelde apparaat heeft een Cu K alpha x-stralenbron, horizontaal sample platform (Bragg-Brentano geometrie), de mogelijkheid tot lage hoeken te meten (0.5° in theta), en een snelle en gevoelige 2D solid state detector. Het zal worden gebruikt voor materiaalonderzoek in anorganische poreuze materialen (zeolieten, templated silica en titania), metaal-organische materialen (kristallijne metaal-organische netwerken - MOFs), organische materialen (vetzuren, bouwstenen voor PUR) en de identificatie en karakterisatie van pigmenten voor de studie en conservatie van schilderijen van oude meesters. Daarenboven kan er door het gebruik van de PDF (probability density function), die rechtstreeks volgt uit de gemeten x-straalverstrooiing, de gemiddelde orde op korte afstand in niet kristallijne materialen (glas, amorfe poeders) worden beschreven.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Een gestructureerde methodologie voor de selectie en formulering van NADES voor enzymatische reacties. 01/10/2019 - 30/09/2022

Abstract

Natuurlijke diep eutectische solventen (NADES) zijn beloftevol als media voor enzymatische reacties in sectoren waar (bio)compatibiliteit met natuurlijke of medische producten noodzakelijk is. In theorie kunnen zij samengesteld worden in functie van de beoogde reactie, doch vandaag is de benodigde kennis hoofdzakelijk empirisch, terwijl mechanistische inzichten op hun best gefragmenteerd zijn. Het louter verklaren van experimentele waarnemingen is daardoor vandaag niet evident, laat staan het maken van voorspellingen. Deze doctoraatsstudie zal een gestructureerd begrip ontwikkelen van het effect van NADES op enzymatische reacties, waarbij het onderscheid tussen oplosbaarheid, solvatatie, viscositeit, inhibitie en denaturatie duidelijk wordt. De oplosbaarheid, solvatatie-energie en viscositeit worden voorspeld door ab initio en moleculaire dynamica berekeningen, die gebruikt worden in een groepsbijdrage model op basis van machinaal leren. Zowel het trainen als valideren van dit model gebeurt door experimenten. Inzichten uit vastgestelde reactiekinetica zullen afgetoetst worden tegen moleculaire dynamica berekeningen van interacties van NADES met de enzymen. Structuurveranderingen van deze enzymen worden aangetoond door Raman optische activiteit spectroscopie. De combinatie van deze onderzoeksmethode garandeert de opbouw van fundamentele kennis, terwijl het groepsbijdrage model een gestructureerde methodologie biedt. De inzichten opgebouwd in dit project kunnen getransfereerd worden naar andere toepassingsdomeinen van NADES.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

CycloPUR - Fundamentele inzichten in reversibele polymerisatie van polyurethanen. 01/07/2019 - 31/12/2020

Abstract

Polyurethanen (PU) vormen een veelzijdige groep polymeren, die in stijgende mate in diverse applicaties gebruikt worden; matrassen, constructieschuimen, automotive en lijmen. PU is een vernet condensatiepolymeer, resulterend uit de reactie van polyolen (polyhydroxylalcoholen) met sterk reactieve diisocyanaten. Als thermoharder (een polymeer zonder smeltpunt) is PU moeilijk recycleerbaar, en state-of-the-art mechanische recyclage leidt enkel tot laagwaardige producten. Nochtans wordt chemolyse (chemische depolymerisatie) sinds lang verkend als alternatief, maar commerciële toepassing beperkt zich tot herwinning van de polyolen. De afwezigheid van technologische opties voor het herwinnen van de diisocyanaat derivaten is hoofdzakelijk te wijten aan de complexiteit van deze moleculen, en een gebrek aan kennis over hun chemisch gedrag tijdens het chemolyseproces. Deze STIMPRO beoogt inzichten in hoe de derivaten van isocyanaat gevormd worden, en hoe zij reageren tijdens een alcoholyse, door experimenten met modelmonomeren. Samen met experimentele en computationele observaties over mengen en oplosbaarheid, wordt deze kennis aangewend voor de creatie van een basisproces voor chemolyse van modelpolyurethanen. De resultaten van deze studie kunnen later gebruikt worden voor het formuleren van een chemolyse van realitisch PU-afval, met herwinning van beide monomeren als belangrijke technologische doorbraak. Daarnaast kan de opgedane kennis getransfereerd worden naar toekomstige formulatie van nieuwe PU met biogebaseerde monomeren

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

P2PC: van plastics naar waardevolle chemicaliën 01/05/2019 - 31/10/2022

Abstract

Het P2PC project draagt bij aan een oplossing tot het urgente probleem van afvalplastics. Het project behandelt enerzijds de uitdaging van toenemende volumes en diversiteit van afvalplastics, anderzijds het opstellen van nieuwe materiaalkringlopen in plaats van vernietiging van waarde. Het belangrijkste uitgangspunt van P2PC is dat plastic afval door pyrolyse een bron kan zijn van diverse waardevolle chemische bouwstenen, de zogenaamde "precious chemicals', in plaats van te eindigen in verbrandingsinstallaties of stortplaatsen. Op die wijze kan P2PC beschouwd worden als een volgende stap in de Vlaamse inspanningen om het globale probleem van afvalplastics aan te pakken.

Onderzoeker(s)

Onderzoeksgroep(en)

Project website

Project type(s)

  • Onderzoeksproject

AirTech'byDesign: Technologie en Stadsontwerp samen in de strijd tegen luchtvervuiling in smalle straten. 01/10/2018 - 30/09/2022

Abstract

De slechte luchtkwaliteit in onze steden staat momenteel centraal in het publieke debat rond gezonde leefomgeving en vormt het speerpunt van innovatieve stedenbouw en mobiliteitsbeleid. Vooral de zogenaamde 'street canyons' vormen de meest problematische verkeersaders van onze steden: het zijn smalle binnenstedelijke wegen die aan beide zijden geflankeerd worden door een ononderbroken rij (hoge) gebouwen. In deze straatprofielen ligt de luchtkwaliteit vaak onder de Europese normen en die van de Wereldgezondheidsorganisatie. Zowel stedenbouwkundig ontwerp als technologische oplossingen, zoals fotokatalysatoren, hebben bewezen een krachtig instrument te vormen voor het verbeteren van de luchtkwaliteit en de algemene gezondheid van de bewoners. Dit onderzoek beperkt zich echter vaak tot een enkel domein, sector of discipline (biotechniek of stedenbouw) en is vaak beperkt tot de analyse van de impact van een enkele parameter op de luchtkwaliteit. Ten tweede richten de meest bekende maatregelen zich op het verminderen van de uitstoot van verontreinigende stoffen en bevinden ze zich op een hoger plannings- en beleidsniveau. Op lokaal schaalniveau van verkeersintensieve locaties en deze street cayons ontbreekt systematisch onderzoek naar de mogelijke bijdrage van stadsontwerp en technologische interventies om de luchtkwaliteit te verbeteren. Bovendien is een groep minder bekende verontreinigende stoffen, de zogenaamde vluchtige organische koolstof (VOC), minder gevoelig voor verkeersregels. De behandeling van wegbestrating, wanden en gevels met een fotokatalysator heeft bewezen een bijdrage te leveren aan de verbetering van de luchtkwaliteit. In street canyons zijn de luchtstroomsnelheden echter vaak te laag voor een optimale prestatie van deze fotokatalysatoren. Wijzigingen in het stedenbouwkundig ontwerp (die de luchtcirculatie en de integratie van UV-verlichting verbeteren) kunnen de VOC-emissie in street canyons in de stad verminderen met een minimale milieubelasting. Kortom, wat luchtkwaliteit in street canyons betreft, bestaat er een fundamenteel disciplinair schisma tussen milieu- en stedenbouwkundige ontwerpwetenschappen. Om te kunnen omgaan met de ruimtelijke verdeling van luchtverontreiniging en de hoge drempel om technologische innovatie te introduceren in stadsplanning, wil dit onderzoeksproject milieu- en ontwerpwetenschappen combineren. Daarom besloten de Onderzoeksgroep voor Stedelijke Ontwikkeling (Ontwerpwetenschappen), DuEL en BioGEM (Ingenieurswetenschappen) om samen deze urgente uitdaging aan te pakken. De wetenschappelijke uitdaging die in dit project wordt aangegrepen, is drieledig: (1) Inzicht verwerven in de ruimtelijke en moleculaire verspreiding van VOC in de stedelijke omgeving, met de nadruk op street canyons, (2) Maximaliseren van het effect van ruimtelijke interventies door en fotokatalytische reductietechnieken om de luchtkwaliteit van street canyons te verbeteren; (3) Formuleren van richtlijnen voor het verbeteren van de luchtkwaliteit in street canyons op basis van LCA-metrieken en extrapoleren van de methodologie naar toekomstige technologische verbeteringen. Samen bieden deze uitdagingen een kans om de gezondheidsproblemen onze stedelijke street canyons te verbeteren. Verdeeld over vier werkpakketten en vier jaar, vraagt ​​deze multidisciplinaire aanpak van deze uitdaging om een ​​combinatie van methodologieën, gaande van literatuuronderzoek tot onderzoek door ontwerp, over modellering en casestudy-onderzoek. De Turnhoutsebaan in Antwerpen wordt geselecteerd als casestudy en is representatief voor typische Vlaamse street canyons op het niveau van ruimtelijke structurerende kenmerken (lengte, hoogte-breedteverhouding), verkeersdichtheid, aangetoonde hoge luchtvervuilingsniveaus en de beschikbaarheid (of afwezigheid) van groene infrastructuur.

Onderzoeker(s)

Onderzoeksgroep(en)

Project website

Project type(s)

  • Onderzoeksproject

Enzymatische reacties in NADES als nieuwe, groene media: activiteit en substraat-/productsolvatatie. 01/07/2018 - 31/12/2019

Abstract

Het voorgestelde onderzoeksproject beoogt het tonen van de geschiktheid en verklaren van het effect van nieuwe, groene solventen, natuurlijke diepe eutecticum solventen (NADES), op enzymatische reacties. NADES zijn eutectische mengsels van twee of meerdere primaire biologische metabolieten (sacchariden, aminozuren, organische zuren, ureum, choline, polyolen) die vloeibaar zijn op of net boven kamertemperatuur, door aanwezigheid van netwerkvormende waterstofbruggen. Hoewel ze eerder onderzocht zijn als groene extractiesolventen, zijn publicaties over hun gebruik voor enzymatische reacties schaars. Voor het eerst zullen wij de invloed van NADES op enzymatische reacties disaggregeren in volgende effecten: solvatatie-energie, massatransfer in bulk en stabiliteit van enzyme-substraat-intermediaren. Een goed gekende enzymatische omzetting, nl. de deacetylering van mannosylerythritol lipide (MEL) mengels met Novozym 435 (een commercieel lipase), zal uitgevoerd worden in NADES als voorbeeldsysteem. Hoewel geen multi-parametrische regressie wordt gedaan, worden kwalitatieve (en semi-kwantitatieve) inzichten vergaard via het koppelen van parametrische oplosbaarheidsmodellering (Hansen model, met experimentele validatie en input) met fysicochemische karakterisering (viscositeit, oppervlaktespanning) van NADES systemen, en concentratie- (substraat, enzyme) en temperatuursafhankelijke kinetische experimenten en modellering. Het geanticipeerde resultaat van dit project is een aanduiding van enzymatische efficiëntie in doelgerichte NADES, en een ontleding van de marginale efficiëntieverandering naar solvatatie, activiteit en massatransferverschillen in vergelijking met traditionele organische solventsystemen.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

MATTER - Mechanische en thermochemische recyclage van gemengd plastic afval 01/05/2018 - 31/10/2020

Abstract

Het MATTER project, een tweejarig Catalisti-ICON project (2018-2020), doelt op het evalueren van de recyclage van post-consumer plastic afvalstromen en de gegenereerde data te gebruiken om een beslissingsondersteunend kader te bouwen. In het MATTER project, worden technische en marktgebaseerde criteria ontwikkeld om een optimaal plastic afval management systeem te ontwikkelen. Meer specifiek, focust het project op de P+ fractie (alle plastic verpakkingsafval) van het uitgebreide P+MD inzamelings- en sorteringssysteem. Partners vanuit de gehele waardeketen nemen deel in het projectconsortium: scheiding en voorbehandeling (Indaver en Bulk.ID), mechanische recyclage (Borealis en ECO-Oh!) en thermochemische recyclage (Indaver en Borealis). Duurzaamheidsanalyses laten ontwikkeling van een beslissingsondersteunend kader toe.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Bio-fabriekjes voor omzetting van polyethyleen. 01/04/2018 - 31/03/2019

Abstract

Dit onderzoeksvoorstel beoogt het bevestigen/ontkrachten van de recent ontdekte (Bombelli et al., Current Biology 2017) versnelde biochemische omzetting van lagedichtheidpolyethyleen (LDPE) door larven van de grote wasmot Galleria mellonella, en het onderzoeken van de aard en opbrengst van metabolieten. Na bekendmaking werden echter onmiddellijk sterke bedenkingen over de betrouwbaarheid van deze conclusies gepubliceerd (Weber et al., Current Biology 2017). Het voorgestelde onderzoek houdt een verbeterd analytisch programma in, gebruik makend van goede blanco en steriele stalen en analyseren van de composietstalen met homogenaat/LDPE. Daarnaast doelt het onderzoek op een mechanistisch begrip van de omzetting. Indien de resultaten uit eerdere literatuur bevestigd worden, zal dit leiden tot verder onderzoek naar biochemische recyclage processen voor polyolefinen, nu dat mechanische recyclage op limieten botst. Ook indien eerdere vaststellingen ontkracht worden, laat dit onderzoeksvoorstel toe deel te nemen in de lopende wetenschappelijke discussie, en kennis en expertise op te bouwen in biochemische afbraak van polyolefinen, of breder nog, functionaliseren van alkanen.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Innovatieve pulp valorisatieprocessen (IMPROVE) 01/03/2018 - 31/10/2021

Abstract

Het ImPrOVE-project (Innovative (pre)POmace Valorization procEss) is gericht op een groot probleem dat in heel Europa verband houdt met de landbouw: de pulp die ontstaat bij het persen van fruit. Deze grote hoeveelheid pulp wordt als afval beschouwd, maar bevat natuurlijke en zeer functionele bestanddelen. De schil en het klokhuis van fruit bevatten beschermende en functionele moleculen: antioxidanten, stabilisatoren, kleurstoffen, aroma's, vezels met potentieel voor hoogwaardige toepassingen in cosmetica, diëten en als bio-additieven in voedsel en dranken. ImPrOVE beoogt de volledige valorisatie van pulp door gebruik te maken van een combinatie van bestaande en innovatieve processen. Deze moeten gemakkelijk en zonder hoge energie- en kostenvereisten kunnen worden uitgevoerd, wat moet resulteren in toegang voor S(M)E's (economische strategische Europese doelstellingen), waarbij de winst over de hele keten wordt herverdeeld en de agro- en voedingsactiviteiten van Europa worden versterkt. ImPrOVE zal een generieke processtroom ontwerpen die toepasbaar is op de meeste soorten afvallen. Twee gevallen zullen worden bestudeerd: Zuid-Europese afvallen van olijven en Midden-/Noord-Europese afvallen van appels/peren/kersen/komkommers. De totale valorisatie wordt bereikt in drie procesclusters: (1) voorbehandeling van de afvallen, waarbij aroma's en olie uit de afgescheiden zaden vrijkomen; (2) extractie van hoogwaardige materialen uit de voorbehandelde pulp en (3) valorisatie van de resulterende vezelmassa, hetzij rechtstreeks (functioneel ontworpen vezels) of door cellulose-lignine te splitsen en beide materialen fysisch, enzymatisch en/of chemisch te valoriseren. Een ambitieus concept is het gebruik van biogebaseerde ionische vloeistoffen (BIOILs) of natuurlijke diepe eutectische oplosmiddelen (NADES) als extractievloeistoffen geavanceerde groene oplosmiddelen. Nog ambitieuzer, en zeer aantrekkelijk, is te bestuderen of de extractievloeistof zelf kan worden gebruikt in plaats van de geïsoleerde en gezuiverde ingrediënten, waardoor enige downstream processing kan worden vermeden. Dermatologische en metabolomische tests, (eco)toxiciteit, biologische afbraak, LCA, industriële relevantie, schaalbaarheid en economische levensvatbaarheid zullen op duurzame wijze worden aangepakt door het Europese multidisciplinaire partnercluster, met academische en industriële leden.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Bio-LCCM's - lange keten condensatiemonomeren. 01/02/2018 - 15/08/2019

Abstract

Het voorgestelde onderzoek doelt op de ontwikkeling van (nieuwe) betaalbare hoogwaardige lange ketenbifunctionele monomeren geschikt voor condensatiereacties, het verduurzamen van hun productieproces en de aanmaak van demonstratiemonsters, met het oog op het verwerven van een octrooi en parallelle industriële valorisatie. Vanuit de beoogde monomeren kunnen nieuwe materialen, in het bijzonder polymeren, geproduceerd worden die ongekende fysicochemische, thermische en mechanische eigenschappen hebben in vergelijking met polymeren bereid vanuit bestaande korte (max. C10 ketenige) α,ω-bifunctionele condensatiemonomeren. Daarnaast zijn deze nieuwe materialen biodegradeerbaar, en openen ze een nieuw perspectief op chemische recyclage. Vandaag kunnen monomeren vergelijkbaar aan de beoogde monomeren enkel geproduceerd worden met een lage koolstofefficiëntie en hoge economische en milieukundige kostprijs. Wij stellen daarom een nieuwe syntheseweg voor, in lijn met principes van groene chemie, die zowel lange (C18+) α,ω-bifunctionele condensatiemonomeren oplevert, als asymmetrische versies van dergelijke monomeren kan opleveren en een syntheseweg die de ketenlengte van dergelijke monomeren kan verhogen tot zelfs verdubbelen. De laatste twee processen waren tot dusver (industrieel) niet bekend noch mogelijk. De monomeren met lange tot zelfs dubbele ketenlengte zijn tot heden nog niet beschreven en dus compleet nieuw. De haalbaarheid van de voorgestelde syntheseweg werd al aangetoond in preliminaire experimenten. De prestaties van vooral dergelijke nieuwe polyesterstructuren zal vergeleken worden met die van "klassieke" (korte) keten varianten. In een tweede fase worden langere ketens (C18+) beoogd door de ketenlengte te verlengen tot te verdubbelen. In dit laatste geval wordt een ethermolecule van twee vetzuurketens bekomen dat aan beide zijden getermineerd is. De bedoeling is dat de totale lengte van de keten tussen de twee functionele groepen groot is, dit wil zeggen 18 tot meer atomen bevat. De hypothese is dat de aanwezigheid van de ether-zuurstof intern in de lange keten geen fundamentele veranderingen in de ketenstructuur oplevert, waardoor de eigenschap van de equivalente homogene "grote C-keten" bekomen wordt. De eigenschappen van deze nieuw bekomen monomeren en vooral oligomeren en polymeren opgebouwd met deze bouwstenen zullen worden nagegaan. Met de bekomen gegevens en voorbeelden wordt een patent ingediend. In een derde fase wordt voor een selectie van de monomeren, namelijk deze met hoogste industriële vraag, de productieprocedure (kostenstructuur) verfijnd. Van deze monomeren worden grotere hoeveelheden aangeleverd ter demonstratie aan industriële partners met het oog op het activeren van de industriële valorisatie. Tegelijkertijd wordt een eerste kostschatting gemaakt.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject