Ethical advisory of the ERC Project BIGDATPOL: towards an evidence-based model for big data policing: Evaluating the statistical-methodological, criminological and legal and ethical conditions.
Abstract
Ik ben lid van het Ethisch Adviesorgaan van het ERC-project BIGDATPOL: naar een evidence-based model voor big data politiewerk: Evaluatie van de statistisch-methodologische, criminologische, juridische en ethische voorwaarden. De taken van het EAB zijn het adviseren van het project met betrekking tot ethische kwesties. Mijn expertise ligt in het bijzonder op het gebied van ethische kwesties die voortvloeien uit het gebruik of de ontwikkeling van kunstmatige intelligentie.Onderzoeker(s)
- Promotor: Calders Toon
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject
Vlaams Artificiële Intelligentie Onderzoeksprogramma (VAIOP) – tweede cyclus.
Abstract
Het Vlaams Artificiële Intelligentie Onderzoeksprogramma is een strategisch basisonderzoeksprogramma met een consortium van elf partners: de vijf Vlaamse universiteiten (KU Leuven, Universiteit Gent, Universiteit Antwerpen, Universiteit Hasselt, Vrije Universiteit Brussel) en zes onderzoekscentra (imec, Flanders Make, VIB, VITO, Sirris en ILVO). Het programma brengt 300+ onderzoekers samen op het gebied van nieuwe AI-methoden die kunnen worden gebruikt in innovatieve toepassingen in gezondheid, industrie, planeet en energie en samenleving. Op die manier draagt het programma bij tot een succesvolle adoptie van AI in Vlaanderen. De ambitie is dat Vlaanderen een sterke internationale positie inneemt op het vlak van strategisch basisonderzoek in AI, en dit binnen een sterk en duurzaam Vlaams ecosysteem. Er zijn vijf focusonderzoeksthema's geselecteerd: verantwoorde AI, mensgerichte AI, duurzame AI (energie-efficiënt en performant), productieve en data-efficiënte AI (systemen die weinig data nodig hebben, die presteren door data te combineren met domeinkennis en ervaring van experts) en veerkrachtige en performante AI (robuust tegen veranderingen in de omgeving). De beschrijving van de werkpakketten en hun onderzoekstaken definieert de aspecten binnen deze thema's die in het programma zullen worden onderzocht. De AI-oplossingen worden gedemonstreerd in real-life use cases. Deze resultaten tonen niet alleen de effectiviteit aan, maar inspireren ook bedrijven voor adoptie en onderzoekers voor verder onderzoek. Het Vlaams Artificiële Intelligentie Onderzoeksprogramma maakt deel uit van het Vlaams AI-beleidsplan. Meer info: www.flandersairesearch.beOnderzoeker(s)
- Promotor: Mannens Erik
- Promotor: Oramas Mogrovejo José Antonio
- Co-promotor: Calders Toon
- Co-promotor: Daelemans Walter
- Co-promotor: Famaey Jeroen
- Co-promotor: Goethals Bart
- Co-promotor: Laukens Kris
- Co-promotor: Martens David
- Co-promotor: Mets Kevin
- Co-promotor: Oramas Mogrovejo José Antonio
- Co-promotor: Sijbers Jan
- Co-promotor: Van Leekwijck Werner
- Co-promotor: Verdonck Tim
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject
Deus Tax Machina - Een onderzoek naar het gebruik van AI door belastingadministraties in de EU en de gevolgen ervan voor de privacy- en gegevensbeschermingsrechten van belastingplichtigen.
Abstract
De onderzoeker beoogt het gebruik van artificiële intelligentie (AI) door belastingadministraties en de bijbehorende gevolgen voor de privacy en het recht op gegevensbescherming van de belastingplichtige in de lidstaten van de Europese Unie te onderzoeken. Belastingadministraties maken in toenemende mate gebruik van AI voor het verwerven van information (bv. internet scraping), verwerken van informatie (bv. data mining), en om met de belastingplichtige te communiceren (bv. chatbot) Belastingadministraties die AI gebruiken, rapporteren positieve resultaten, zoals een vermindering van de overhead kosten en een meer accurate selectie van te controleren belastingplichtigen. De voorbeelden van "SyRI", "RoboDebt" of "COMPAS" hebben evenwel aangetoond dat het gebruik van AI een aantal risico's met zich mee kan brengen, zoals het risico van ongewenste profilering, discriminatie, onrechtmatige correlaties, excessieve gegevensverzameling of een gebrek aan transparante besluitvorming. Dit onderzoek will de kennis vergroten omtrent de risico's die deze nieuwe technologieën met zich meebrengen op het gebied van privacy en databescherming, door een taxonomie van AI tax governance tools te ontwikkelen, en een analytisch kader op dergelijke risico's te analyseren. Het onderzoek zal ook een vergelijkende evaluatie maken van de wijze waarop de regels van EU-lidstaten die dit gebruik van AI reguleren, de rechten van de belastingplichtigen naar behoren waarborgen.Onderzoeker(s)
- Promotor: Van de Vijver Anne
- Co-promotor: Calders Toon
- Mandaathouder: Hadwick David
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject
Digitalisatie en belastingen
Abstract
De digitale transformatie heeft wijzigingen veroorzaakt in alle onderdelen van het dagelijks leven. In het DigiTax project worden de fiscale gevolgen onderzocht van deze evolutie vanuit twee perspectieven. Vooreerst worden de uitdagingen onderzocht die de digitalisatie met zich mee brengt voor de fiscaliteit. In de digitale economie hebben multinationals meer mogelijkheden om winsten te verschuiven naar landen met een lage belasting. Waar moeten deze winsten worden belast? Daarnaast dringen robots meer en meer binnen in de arbeidsmarkt, gaande van automatisch rijdende auto's tot chatbots. Moeten zij worden beschouwd als apart belastbare entiteiten, en zo ja, hoe moet deze taxatie dan gebeuren? Meer algemeen zal worden onderzocht (a) welk belastingstelsels er onder druk komen te staan, (b) welke traditionele fiscale concepten moeten worden gewijzigd en welke nieuwe fiscale concepten moeten worden ontwikkeld die bijdragen tot een eerlijke belastingheffing, (c) wie hiertoe bevoegd is en (d) hoe deze wijziging moet worden geïmplementeerd ? Daarnaast onderzoeken we de opportuniteiten die ontstaan door de digitalisatie voor zowel een rechtvaardige belastingheffing als voor de effectiviteit en de efficiëntie van de belastingoverheden. Hoe kunnen bijvoorbeeld verbeterde data mining algoritmes en het toevoegen van nieuwe gegevensbronnen bijdragen tot een meer nauwkeurig, begrijpelijk en niet-discriminatoir fraudedetectiesysteem dat de belastingontduiking of - ontwijking tot een minimum reduceert? Hoe kan blockchain technologie bijdragen tot transparantie, tax compliance en vertrouwen tussen de overheid en de belastingbetaler? In dat kader zullen meer in het bijzonder de opportuniteiten worden onderzocht van data mining, internet of things (IoT) en blockchain technologie voor de fiscaliteit. Dit project vereist een multidisciplinaire benadering, waarbij de technologische, juridische, economische en maatschappelijke implicaties worden onderzocht van digitalisatie en belastingheffing.Onderzoeker(s)
- Promotor: Peeters Bruno
- Co-promotor: Calders Toon
- Co-promotor: Jorissen Ann
- Co-promotor: Martens David
- Co-promotor: Van de Vijver Anne
Onderzoeksgroep(en)
Project website
Project type(s)
- Onderzoeksproject
Onderzoeksprogramma Artificiële Intelligentie.
Abstract
Het Vlaams AI-onderzoeksprogramma concentreert zich op generieke AI-methodologieën die algemeen inzetbaar zijn voor talloze toepassingen in de gezondheidszorg, de industrie en door de overheid. De noden zijn aangegeven door gebruikers uit deze toepassingsdomeinen.Onderzoeker(s)
- Promotor: Mannens Erik
- Co-promotor: Calders Toon
- Co-promotor: Daelemans Walter
- Co-promotor: Goethals Bart
- Co-promotor: Latré Steven
- Co-promotor: Laukens Kris
- Co-promotor: Martens David
- Co-promotor: Sijbers Jan
- Co-promotor: Steckel Jan
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject
Onderzoeksprogramma Artificiële Intelligentie.
Abstract
Het Vlaams AI-onderzoeksprogramma heeft als doel om het strategisch basis onderzoek omtrent AI aan de Vlaamse universiteiten en kenniscentrums te stimuleren. Dit onderzoek moet toepasbaar en relevant zijn voor de Vlaamse industrie. Concreet werden er 4 grote uitdagingen, met toenemende complexiteit, gedefinieerd: 1. Het ondersteunen van complexe beslissingen: focus op het nemen van complexe beslissingen door AI-systemen gebaseerd op datasets die mogelijks onvolledige of foutieve informatie kunnen bevatten. 2. Het verzamelen en verwerken van informatie in de edge: focus op het gebruik van AI-systemen in de egde i.p.v. de cloud door de integratie van software en hardware en de ontwikkeling van algoritmen die minder energie en andere hulpbronnen nodig hebben. 3. De autonome interactie met andere beslissingsentiteiten: focus op samenwerking tussen verschillende AI-systemen die onafhankelijk van elkaar opereren. 4. Het naadloos communiceren en samenwerken met mensen: focus op de natuurlijke interactie tussen mensen en AI-systemen en de ontwikkeling van AI-systemen die complexe omgevingen kunnen begrijpen en menselijke redeneringen kunnen toepassen.Onderzoeker(s)
- Promotor: Hellinckx Peter
- Promotor: Latré Steven
- Co-promotor: Calders Toon
- Co-promotor: Daelemans Walter
- Co-promotor: Goethals Bart
- Co-promotor: Laukens Kris
- Co-promotor: Martens David
- Co-promotor: Sijbers Jan
- Co-promotor: Steckel Jan
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject
Onderzoeksprogramma Artificiële Intelligentie.
Abstract
Het Vlaams AI-onderzoeksprogramma heeft als doel om het strategisch basis onderzoek omtrent AI aan de Vlaamse universiteiten en kenniscentrums te stimuleren. Dit onderzoek moet toepasbaar en relevant zijn voor de Vlaamse industrie. Concreet werden er 4 grote uitdagingen, met toenemende complexiteit, gedefinieerd: 1. Het ondersteunen van complexe beslissingen: focus op het nemen van complexe beslissingen door AI-systemen gebaseerd op datasets die mogelijks onvolledige of foutieve informatie kunnen bevatten. 2. Het verzamelen en verwerken van informatie in de edge: focus op het gebruik van AI-systemen in de egde i.p.v. de cloud door de integratie van software en hardware en de ontwikkeling van algoritmen die minder energie en andere hulpbronnen nodig hebben. 3. De autonome interactie met andere beslissingsentiteiten: focus op samenwerking tussen verschillende AI-systemen die onafhankelijk van elkaar opereren. 4. Het naadloos communiceren en samenwerken met mensen: focus op de natuurlijke interactie tussen mensen en AI-systemen en de ontwikkeling van AI-systemen die complexe omgevingen kunnen begrijpen en menselijke redeneringen kunnen toepassen.Onderzoeker(s)
- Promotor: Latré Steven
- Co-promotor: Calders Toon
- Co-promotor: Daelemans Walter
- Co-promotor: Goethals Bart
- Co-promotor: Hellinckx Peter
- Co-promotor: Laukens Kris
- Co-promotor: Martens David
- Co-promotor: Sijbers Jan
- Co-promotor: Steckel Jan
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject
Het ontdekken en exploiteren van interactie patronen in netwerken.
Abstract
De meeste werken in netwerk analyse concentreren zich op statische graafstructuren en zoeken naar patronen om bijvoorbeeld de meest invloedrijke nodes in het netwerk te vinden. Weinig bestaande werken bestuderen dynamische netwerken met herhaalde interacties tussen nodes. Het doel van dit project is om deze lacune weg te werken door nieuwe methoden te ontwikkelen om patronen te ontdekken in de interacties tussen netwerk nodes. Deze interactie patronen kunnen bijvoorbeeld karakteriseren hoe informatie zich verspreidt in sociale netwerken, of geldstromen in financiële netwerken in kaart brengen. In het project beschouwen we drie orthogonale dimensies. De eerste dimensie is het patroon type. We beschouwen onder andere temporele paden, informatie cascades en cycles. Om een gemotiveerde keuze te maken betreffende patroontype om te bestuderen, laten we ons leiden door drie cases: twee interactie netwerken met betaaldata, een met een marketing doel en een ander om betalingsproblemen bij leningen te voorspellen, en een sociaal netwerk met een toepassing in micro-financiering. De tweede dimensie betreft hoe we het patroon type gaan zoeken: is het de bedoeling alle voorkomens van een bepaald patroontype te vinden, of zoeken we top-patronen die vaker voorkomen dan andere. De derde en laatste dimensie betreft het computationele model dat we gebruiken: batch met random access, one-pass, of streaming. Het is belangrijk dat de methodes schaalbaar zijn en kunnen werken met data van grote interactie netwerken. De belangrijkste bijdrage van dit project ligt in de combinatie van streaming technieken, pattern mining en sociaal netwerk analyse, gevalideerd in drie echte use cases.Onderzoeker(s)
- Promotor: Calders Toon
- Co-promotor: Martens David
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject
Fundamenten van inductieve databases voor data mining.
Abstract
Het project beoogt de ontwikkeling van een inductief database systeem voor de ondersteuning van het iteratieve data mining proces. Bij de realisatie van dit project identificeren we volgende stappen : 1) De ontwikkeling van een adequate theorie voor data mining in de vorm van een representatietaal om zowel data als inductief verkregen kennis op te slaan. Hierbij willen we focussen op eerste-orde logica fragmenten (bvb. conjunctive queries); 2) Het inpassen van bestaande data mining patroon types in dit model, zoals associatie regels, klassificatie, clustering; 3) Het ontwerpen van efficiënte implementaties van de voorgestelde modellen. Hierbij dient onder andere nagegaan te worden in hoeverre bestaande optimalisatietechnieken voor specifieke data mining probelemen en relationele databases veralgemeend kunnen worden naar inductieve databases.Onderzoeker(s)
- Promotor: Paredaens Jan
- Co-promotor: Calders Toon
- Co-promotor: Goethals Bart
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject
Volledige en heuristische methodes voor het garanderen van privacy in data mining.
Abstract
Data Mining heeft tot doel uit grote hoeveelheden gegevens nuttige informatie zoals trends en patronen te destilleren. Vaak bevatten de data waarop data mining technieken worden toegepast confidentiële persoonlijke gegevens. Het is daarom belangrijk om na te gaan in welke mate het toepassen van data mining technieken de privacy schendt. In dit project willen we methodes ontwikkelen om in te schatten in welke mate een bepaalde data mining operatie de privacy van de gegevens schendt. Omdat volledige methodes waarschijnlijk heel hoge complexiteit hebben, zal er ook aandacht besteed worden aan benaderende, heuristische methodes.Onderzoeker(s)
- Promotor: Calders Toon
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject
Database ondersteuning voor interactieve data mining.
Abstract
Dit project heeft als doel de mogelijkheden voor een overkoepelend systeem voor data mining, een zogenaamde data mining database, te onderzoeken. Het ontwerp van een database systeem voor data mining brengt vele fundamentele vragen met zich mee. Hoe representeren we de data? Op welke manier integreren we de verschillende algoritmes in een bevragingstaal? Hoe kunnen we de bevragingen optimaliseren? Een theoretische en fundamentele benadering van deze vragen staat in dit project centraal.Onderzoeker(s)
- Promotor: Paredaens Jan
- Mandaathouder: Calders Toon
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject
Data mining : complexiteiten van mining methodes en query talen.
Abstract
Door recente ontwikkelingen in kennismanagement en hardware zijn grote digitale databases een alledaags feit geworden. De waarde van zulke databases wordt echter niet uitsluitend bepaald door de grootte, maar ook en vooral door de mogelijkheid tot analyse. Datamining is het ontdekken van regels en afhankelijkheden in grote databases. De bedoeling is om structuur in data te vinden en naar boven te brengen, eerder dan in te gaan op de individuele elementen van de data. Het zijn deze meta-data die de informatiewaarde van de database bepalen. Er bestaan reeds belangrijke toepassing van datamining in de bedrijfswereld. De voordelen die een bedrijf kan halen uit de metainformatie is groot. Omdat datamining zich bezig houdt met het meta-niveau van data, zijn parallellen met artificiële intelligentie en knowledge engineering nooit ver weg. In dit opzicht wordt datamining ook wel knowledge discovery in databases genoemd. Datamining is ook zeer sterk verbonden met OLAP (online analytical processing), het analyseren van gegevens. Onderzoek naar datamining technieken startte in de jaren '90 en kende een enorme groei sinds 1995. Regels die in de context van datamining vaak bestudeerd worden, zijn de association rules. Er zijn veel algoritmes bekend voor het vinden van association rules. Het bekendste algoritme hiervoor is het apriori-algoritme. Deze klasse van regels is echter zeer rudimentair. Het zou daarom interessant zijn om meer algemene regels te bestuderen. Een mogelijk beschrijvingssysteem voor deze regels is de eerste orde logica. Over de complexiteit van deze regels is weinig geweten. Er zijn meerdere complexiteitsmaten die bestudeerd kunnen worden : complexiteit in functie van het aantal tuples, het aantal attributen of de lengte van de regels. Een interessant probleem zou dan zijn om deze regels te classificeren via hun complexiteiten. Het onderzoek kan zich daarna kunnen toespitsen op de patronen waarvoor er datamining algoritmes bestaan met aanvaardbare complexiteit. In mijn eindverhandeling wordt het zoeken naar een algemenere soort regels bestudeerd. Een ander aspect van datamining is het volgende: hoe kunnen we een gebruiker van database- en OLAP-systemen in staat stellen optimaal gebruik te maken van de mogelijkheden die datamining biedt? Hiervoor dienen er query-talen ontworpen te worden, die expressief zijn en die de gebruikers in staat stellen om op een eenvoudige manier hun vragen te formuleren. Ook kan er gekeken worden in welke mate het begrip genericiteit nog van toepassing is op datamining-queries. Generische queries zijn queries die onafhankelijk zijn van gekozen referentiekader en datastructuur. Bij datamining echter zijn veel van de methodes sterk afhankelijk van de fysische vorm van de data. Datamining is een gebied waarop momenteel hard gewerkt wordt. In de UIA (Universitaire Instelling Antwerpen) loopt er momenteel een project van het FWO over datamining. Het voorgestelde project sluit hierbij aan. Het begrijpen van de theoretische grondslagen van datamining is belangrijk. Waar het huidige onderzoek meestal eerder ad hoc en met weinig theoretische onderbouw gebeurt, heeft dit project als doel het theoretische inzicht in datamining te vergroten.Onderzoeker(s)
- Promotor: Paredaens Jan
- Mandaathouder: Calders Toon
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject
Data mining : complexiteiten van mining methodes en query talen.
Abstract
Door recente ontwikkelingen in kennismanagement en hardware zijn grote digitale databases een alledaags feit geworden. De waarde van zulke databases wordt echter niet uitsluitend bepaald door de grootte, maar ook en vooral door de mogelijkheid tot analyse. Datamining is het ontdekken van regels en afhankelijkheden in grote databases. De bedoeling is om structuur in data te vinden en naar boven te brengen, eerder dan in te gaan op de individuele elementen van de data. Het zijn deze meta-data die de informatiewaarde van de database bepalen. Er bestaan reeds belangrijke toepassing van datamining in de bedrijfswereld. De voordelen die een bedrijf kan halen uit de metainformatie is groot. Omdat datamining zich bezig houdt met het meta-niveau van data, zijn parallellen met artificiële intelligentie en knowledge engineering nooit ver weg. In dit opzicht wordt datamining ook wel knowledge discovery in databases genoemd. Datamining is ook zeer sterk verbonden met OLAP (online analytical processing), het analyseren van gegevens. Onderzoek naar datamining technieken startte in de jaren '90 en kende een enorme groei sinds 1995. Regels die in de context van datamining vaak bestudeerd worden, zijn de association rules. Er zijn veel algoritmes bekend voor het vinden van association rules. Het bekendste algoritme hiervoor is het apriori-algoritme. Deze klasse van regels is echter zeer rudimentair. Het zou daarom interessant zijn om meer algemene regels te bestuderen. Een mogelijk beschrijvingssysteem voor deze regels is de eerste orde logica. Over de complexiteit van deze regels is weinig geweten. Er zijn meerdere complexiteitsmaten die bestudeerd kunnen worden : complexiteit in functie van het aantal tuples, het aantal attributen of de lengte van de regels. Een interessant probleem zou dan zijn om deze regels te classificeren via hun complexiteiten. Het onderzoek kan zich daarna kunnen toespitsen op de patronen waarvoor er datamining algoritmes bestaan met aanvaardbare complexiteit. In mijn eindverhandeling wordt het zoeken naar een algemenere soort regels bestudeerd. Een ander aspect van datamining is het volgende: hoe kunnen we een gebruiker van database- en OLAP-systemen in staat stellen optimaal gebruik te maken van de mogelijkheden die datamining biedt? Hiervoor dienen er query-talen ontworpen te worden, die expressief zijn en die de gebruikers in staat stellen om op een eenvoudige manier hun vragen te formuleren. Ook kan er gekeken worden in welke mate het begrip genericiteit nog van toepassing is op datamining-queries. Generische queries zijn queries die onafhankelijk zijn van gekozen referentiekader en datastructuur. Bij datamining echter zijn veel van de methodes sterk afhankelijk van de fysische vorm van de data. Datamining is een gebied waarop momenteel hard gewerkt wordt. In de UIA (Universitaire Instelling Antwerpen) loopt er momenteel een project van het FWO over datamining. Het voorgestelde project sluit hierbij aan. Het begrijpen van de theoretische grondslagen van datamining is belangrijk. Waar het huidige onderzoek meestal eerder ad hoc en met weinig theoretische onderbouw gebeurt, heeft dit project als doel het theoretische inzicht in datamining te vergroten.Onderzoeker(s)
- Promotor: Paredaens Jan
- Mandaathouder: Calders Toon
Onderzoeksgroep(en)
Project type(s)
- Onderzoeksproject