Onderzoeksgroep

Expertise

Ontwikkeling en studie van geavanceerde data mining en machine learning methoden. In het bijzonder onderzoeken we: (i) nieuwe methoden om efficient interessante patronen te ontdekken in sequentiële data bronnen; (ii) nieuwe methoden om contextuele anomalieën te detecteren in heterogene sequentiële data bronnen; (iii) en nieuwe methoden voor multi-label classificatie in extreem grote datasets. Daarnaast onderzoeken we toepassingen van deze methoden in domeinen zoals de monitoring van windmolen parken en anomalie detectie in een Industrial Internet of Things context.

Interpreteerbare regelgebaseerde aanbevelingssystemen. 01/11/2023 - 31/10/2026

Abstract

Aanbevelingssystemen helpen om de meest relevante items uit een enorme verzameling te identificeren. In recente onafhankelijke evaluatiestudies is aangetoond dat regelgebaseerde modellen even accuraat zijn dan complexere state-of-the-art modellen. Bovendien hebben op regels gebaseerde algoritmen interessante eigenschappen, zoals het potentieel van interpreteerbaarheid, het vermogen om lokale patronen te identificeren en de ondersteuning van context attributen. Ten eerste willen we bestaande aanbevelingsalgoritmen met verschillende biases en voorspellingsstrategieën onderzoeken en onafhankelijk evalueren. Naast nauwkeurigheid bestuderen we daarbij ook de diversiteit en structuur van de resulterende modellen, die belangrijk zijn voor het kaderen van de interpreteerbaarheid van de resultaten. Ten tweede slagen we een brug tussen aanbevelingssystemen en recente multi-label classificatie methoden die een optimale set van regels leren m.b.t. een verliesfunctie. We onderzoeken of een besluitvormingstheorie de identificatie van de optimale set van regels kan garanderen m.b.t. een verliesfunctie die rekening houdt met nauwkeurigheid, complexiteit en diversiteit. We houden daarbij ook rekening met de karakteristieken van aanbeveling datasets, zoals de ongelijke distributie, impliciete feedback en schaal. Ten slotte gebruiken we nieuwe, op regels gebaseerde algoritmen die nauwkeuriger zijn dan momenteel mogelijk voor intensive care monitoring en online voor e-commerce en nieuws.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject

Interpreteerbare kwalitatieve evaluatie van online aanbevelingssystemen. 01/10/2020 - 30/09/2021

Abstract

Individuen vertrouwen vaak op aanbevelingen van anderen bij het nemen van routinematige, dagelijkse beslissingen. Aanbevelingsalgoritmen die dit gedrag nabootsen, zijn essentieel voor het succes van e-commerce. Een open vraag is waarom algoritmen deze aanbevelingen doen. Dit is problematisch gezien dat de meest nauwkeurige algoritmen voor machine learning black-box-modellen zijn en we een dynamische omgeving hebben waarin mogelijk meerdere modellen worden geïmplementeerd en periodiek opnieuw worden getraind. Aangezien elke organisatie menselijk toezicht en besluitvorming nodig heeft, is er behoefte aan inzicht in gebruikersgedrag en interacties met aanbevelingen van black-box machine learning-algoritmen. Traditioneel worden twee aanbevelingssystemen vergeleken op basis van één statistiek, zoals de click-through-rate na een A/B-test. We zullen de prestaties van online aanbevelingssystemen kwalitatief beoordelen door patronen bloot te leggen die kenmerkend zijn voor de verschillen in beoogde gebruikers en items. We stellen voor om interpreteerbare machine learning toe te passen, waarbij het doel is om verklaringen te produceren die kunnen worden gebruikt om menselijk begrip en beslissingen te ondersteunen. Aan de hand van ontdekte interpreteerbare associatieregels en, mogelijk gegroepeerde, counterfactual verklaringen, genereren we waarom aanbevelingssysteem A beter (of slechter) presteert dan aanbevelingssysteem B.

Onderzoeker(s)

Onderzoeksgroep(en)

Project type(s)

  • Onderzoeksproject